
The prodigious volume of applied and interdisciplinary heat island research in Phoenix, 

Arizona, was motivated by several factors intrinsic to the city and has contributed to 

formation of municipal policies geared toward sustainable urban climates.

T	he desert city of Phoenix, Arizona, is the focal  
	point of the expansive Phoenix Metropolitan  
	Area (PMA) (~37,000 km2) (Fig. 1). Since 

1950, the PMA has experienced 
extensive land use and land cover 
(LULC) alterations, changing from 
a predominantly agricultural region 
to a metropolis mostly compris-
ing residential suburbs (Fig. 2). 
Consequently, several interrelated 
environmental concerns arose that 
potentially threaten its long-term 
sustainability, including water scar-
city (e.g. Wentz and Gober 2007), 
reduction of native biodiversity (e.g., 
Grimm and Redman 2004), poor 
urban air quality (e.g., Doran et al. 
2003; Lee et al. 2007), and the urban 
heat island (UHI).

The last feature is the phenom-
enon of warmer urban areas vis-à-vis 
pre-urban or “rural” surroundings. 
Since it was first observed in London 
by Luke Howard (Howard 1833), the 
UHI has been thoroughly investi-
gated in cities of varying size and 
climate type. It is caused by several 

factors directly attributed to LULC change, such 
as alterations to the surface energy balance from 
increased absorption of radiation energy, higher 
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Fig. 1. The boundaries of the Phoenix metropolitan area (PMA) in 
2000 and surrounding topography. Note the complex topography 
arising from mountains along the northern and eastern margins of 
the city.
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anthropogenic heat emissions, and decreased sur-
face evapotranspiration in urban areas (Oke 1982). 
Magnitudes of maximum UHI intensity, defined as 
the largest difference between urban and rural tem-
peratures (ΔTu–r), are influenced by synoptic weather 
type, urban morphology, timing of temperature 
observations, and categorization of “rural” areas 
adjacent to the city (Chow and Roth 2006; Stewart 

2011). Global ly, Parker 
(2004, 2006) demonstrat-
ed that urbanization is an 
insignif icant contribu-
tor to recent increases in 
global surface temperature 
relative to other factors. 
When coupled with these 
increases, however, local 
warming from the UHI 
intensifies the climate dis-
comfort of urban residents 
and increases their vulner-
ability to heat stress (e.g., 
Wilbanks et al. 2007).

A large body of academic 
work exists on the Phoenix 
UHI relative to other cities. 
As of mid-2011, 55 studies 
directly examining urban–
rural temperature differ-
ences have been published 
in the peer-reviewed litera-
ture. In contrast, a simple 
literature search done in 
June 2011 using the ISI 
Web of Knowledge (http://
apps.isiknowledge.com) 
with the term “heat island 
<insert city>” for New York 
City, Houston, and Los 
Angeles resulted in 28, 34, 
and 10 studies, respectively. 
Research of urban tempera-
tures in Phoenix also has a 
long history. Gordon (1921) 

in Monthly Weather Review surveyed temperatures 
throughout the Salt River Valley and mapped winter 
minimum temperatures with notable elevated iso-
therms over the nascent city of Phoenix (Fig. 3). The 
uncommonly broad extent of literature raises several 
questions of interest for urban meteorologists and 
climatologists: What factors motivated the develop-
ment of UHI study in Phoenix? Are there generalized 
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Fig. 2. Land use/land cover (LULC) change in the PMA from 1912 to 2000 
illustrating the increase of urbanized land cover at the expense of desert and 
agricultural land use [Source: Central Arizona–Phoenix Long-Term Ecological 
Research (CAP-LTER)].
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and discernable research 
themes and approaches? 
What findings or theoreti-
cal contributions have there 
been with respect to other 
cities in similar (or dissimi-
lar) climates? Has commu-
nication of these research 
results directed public pol-
icy in the PMA with respect 
to UHI mitigation?

Therefore, this article 
comprehensively reviews 
UHI research occurring 
within the PMA and frames 
it in the context of a poten-
tially useful case study of 
applied climatology with-
in a major American city. 
We based our review on 
the body of available peer-
reviewed journal articles, 
book chapters, technical 
reports, and governmental reports that study UHI 
phenomena within the city’s geographical boundar-
ies. We first examine a variety of factors that moti-
vated UHI research within the city and then sum-
marize research themes, approaches, and theoretical 
contributions arising from its study. Several examples 
of municipal policy arising from local research are 
analyzed, and this review concludes with some sug-
gested recommendations for future investigation.

MOTIVATION FOR UHI RESEARCH. We 
propose that UHI research in the PMA developed 
from several extrinsic (i.e., originating outside of the 
PMA) and intrinsic factors. Theory derived from 
studies in other cities was a major extrinsic factor in 
formulating specific deductive research questions for 
Phoenix UHI research. Other factors included 1) the 
rapid post-1945 LULC change and its associated envi-
ronmental changes; 2) projected impacts of a warmer, 
drier American Southwest from global and regional 
climate change; and 3) the prevalence of clear and 
calm synoptic weather conditions, especially during 
summer, that favor development of large UHI intensi-
ties throughout the year. To some degree, however, 
each of these factors could also apply to research oc-
curring in other cities. We thus focus on three other 
important and unique intrinsic influences.

Partnerships between the academy and private sector 
agencies. A confluence of complementary interests 

existed between several local and national agencies 
keen on applied urban meteorological investigation 
within the PMA. These agencies included meteorol-
ogy and climatology departments in Arizona’s major 
research universities, the State Climate Office, the 
National Weather Service (NWS), the National Severe 
Storms Laboratory (NSSL), the Arizona Depart-
ment of Environmental Quality (ADEQ), a private-
sector energy and water company—Salt River Project 
(SRP)—and municipal governments at city, county, 
and state levels.

Several initiatives that developed from these 
partnerships were essential in expanding the scope 
of urban meteorology, and subsequent UHI research, 
within Phoenix. In 1977, the NWS, the National 
Climatic Center, and the Arizona Board of Regents 
formally partnered to supply and archive climate data 
from every meteorological station within the state. 
This partnership’s intention was to publish monthly 
state climate summaries for interested users, which 
is an arrangement that continues to the present day. 
Throughout the 1980s, another partnership between 
SRP, Arizona State University, and the State Climate 
Office spurred and supported academic research 
into several urban climate topics, including the UHI. 
One major research objective of this union was to 
improving short-term weather forecasting models 
applied to urban areas. Another partnership in 1989 
between the NSSL and the State Climate office re-
sulted in the Arizona Thunderstorm Chase (AZTC) 

Fig. 3. Mean winter (Dec and Jan) minimum temperatures (°F) during the 
early twentieth century for the Salt River Valley, which includes a notable 
elevated isotherm pattern over the City of Phoenix (Source: Gordon 1921).
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project, a real-time storm monitoring program oper-
ated by local university students and volunteers that 
gathered and transmitted urban thunderstorm data 
to NWS Phoenix (Cerveny et al. 1992).

Other partnerships within academic institutes, 
especially between science and social science disci-
plines, were also essential in guiding several research 
projects. An important organization that helped facil-
itate such research was the Central Arizona–Phoenix 
Long-Term Ecological Research (CAP-LTER) project, 
a National Science Foundation (NSF) program that 
investigates the complexities of human–ecological 
processes within the PMA. CAP-LTER has success-
fully fostered an academic environment that aids 
interdisciplinary communication and effectively 
eases the cross-pollination of ideas and methods 
between scientists and social scientists involved in 
UHI-related study. This was an important develop-
ment in UHI research, as networking and exchange of 
ideas across disciplines were stressed by Mills (2006) 
and Oke (2006) as being critical for the development 
and progression of the study of urban meteorology 
and climatology.

A well-developed and extensive urban meteorological 
station network. Part of the raison d’être for the 

development of several aforementioned interagency 
partnerships was the high demand for climate data 
within the PMA. For instance, an increasing volume 
of data requests originated from the private sector 
in the early 1990s (e.g., SRP being keen on examin-
ing variations of urban insolation and temperature 
data for potential solar energy applications). Other 
stakeholders were interested in real-time, hourly 
climate data for agricultural or horticultural pur-
poses in cities within the state (e.g., the University 
of Arizona) or for air pollution and f lood hazard 
warnings in the PMA (e.g., Maricopa County govern-
ment). Other municipal governments also required 
high-resolution urban climate data for policy issues 
such as air and water quality regulations, construc-
tion project designs, and energy and groundwater 
use (Brazel 1999).

These data requests would usually fall under the 
purview of the NWS; however, the urban-specific 
data could not be easily supplied as 1) most existing 
cooperative weather stations were limited in spatial 
extent and 2) these stations primarily recorded basic 
temperature and precipitation data lacking fine tem-
poral resolution. The large interest for urban climate 
data precipitated the development of an extensive 
meteorological station network scattered throughout 

the PMA over a variety of 
LULC types (Fig. 4). These 
networks of rea l-t ime, 
automated weather sta-
tions were developed, and 
are currently operated, by 
a variety of stakeholders 
including the Maricopa 
County government and 
SRP. As of the end of 2010, 
there were 70 operational 
stations with profession-
ally quality-controlled data 
available for interested re-
searchers, either through 
downloads from online 
servers or by contacting the 
relevant agency (Table 1). 
Several station networks 
have been in operation since 
1990, and this duration of 
high-quality data also facili-
tates historical research that 
would be problematic in 
other cities lacking a long-
lived urban meteorological 
station network.

Fig. 4. 2005 LULC classification of the PMA (Buyantuyev 2005) with loca-
tions of operational urban meteorological stations. ALERT = Automated 
Local Evaluation in Real Time; AZMET = Arizona Meteorological Network; 
MCAQD = Maricopa County Air Quality Department; NWS = National 
Weather Service Automated Surface Observing Systems; PRISMS = Phoenix 
Real-time Instrumentation for Surface Meteorological Studies.
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Strong media coverage on UHI-related issues in the PMA. 
There has been persistent and robust coverage on the 
UHI that parallels the notable academic and private 
sector interest. We conducted an archival search of 
the newspaper of record in the state [The Arizona 
Republic; archives (and all cited articles) are avail-
able online at http://pqasb.pqarchiver.com/azcentral 
/advancedsearch.html] and noted 187 articles related 
to “urban heat island” published from January 1999 
to December 2010. Local UHI coverage was exten-
sive in both form and content, with articles such as 
1) brief, factual reports of UHI impacts (e.g., “2010 
Phoenix summer one of hottest ever due to overnight 
lows,” 6 September 2010); 2) longer editorial columns 
(e.g., “Let’s cool it! We got ourselves onto this heat 
island, we can get ourselves off it,” 14 September 
2003); 3) guest opinion columns from academic 
researchers (e.g., “Urban heat island affects Phoenix 
all yearround,” 22 September 2007); and 4) in-depth, 
multi-page coverage of UHI research (e.g., “Cities are 
key culprits in weather shifts,” 11 January 2009).

Television meteorologists from several PMA 
television network channels also regularly high-
light the UHI, both in on-air broadcasts (e.g., www 
.myfoxphoenix.com/dpp/weather/heat-island-
effect-7-9-2010) and by having informative and 
regularly updated UHI-related content online (e.g., 
KNXV-TV’s heat center, available online at www 
.abc15.com/subindex/weather/heat_center). The 
interested public is thus easily able to watch archived 
footage of these broadcasts or seek basic, accurate 
information about the UHI and its impacts through 
the Internet. The broad extent of journalistic coverage 
of UHI in both established print and broadcast media 
appears to be rare when compared to other cities, and 
we argue that it possibly reflects—and cultivates—a 

strong level of public interest by local residents in 
knowing about and understanding the UHI.

S U M M A RY O F U H I  R E S E A RC H I N  
PHOENIX AND ITS THEORETICAL CON-
TRIBUTIONS. We reviewed, and subsequently 
summarized, a comprehensive list of published peer-
reviewed UHI studies that examined the PMA UHI, 
which included research into surface and near-surface 
(~2 mAGL) ΔTu–r (Table 2). Each study was catego-
rized into distinct themes, each possessing implicit 
approaches that investigated relevant thematic top-
ics. Notable results from papers categorized in each 
theme/approach, as well as their key contributions to 
UHI theory, have also been condensed. When exam-
ined according to UHI type, a large majority of studies 
examined near-surface temperatures within the urban 
canopy layer (Oke 1976). Across all themes, far fewer 
studies on either the surface or boundary-layer UHI 
exist, and there was no published research on subsur-
face UHI. This skewed distribution is unsurprising, 
primarily because fieldwork campaigns with direct 
canopy-layer temperature observations are relatively 
easier to undertake compared to other UHI types (e.g., 
remotely sensed based surface UHI observations can 
be limited by gaps in spatiotemporal data coverage).

UHI research themes within the PMA. The largest num-
ber of papers reviewed dealt with the physical study of 
UHI over different spatiotemporal scales. In general, 
study methodologies analyzed 1) meteorological sta-
tion and/or vehicle traverse data, 2) remote sensed 
data from airborne or satellite platforms, and 3) data 
derived from scale, statistical, or numerical modeling 
techniques. Results from most studies complemented 
findings from elsewhere (see, e.g., Arnfield 2003; 

Table 1. Listing of operational urban meteorological station networks based within the PMA in 2010.

Station network Operated by
Original network 

objective

Number of 
PMA stations 

in 2010

PRISMS (Phoenix Real-time Instrumentation for 
Surface Meteorological Studies)

Salt River Project  
(SRP)

Energy demand and 
solar research

16

AZMET (Arizona Meteorological Network)
University of Arizona

Agricultural and 
horticultural data

8

AQD (Air Quality Department) Maricopa County Urban air pollution 22

FCD (Flood Control District) ALERT 
(Automated Local Evaluation in Real Time)

Maricopa County
Urban flood hazard 

control
16

ASOS (Automated Surface Observing Systems) National Weather Service  
(NWS)

Surface weather 
observation

8

TOTAL 70
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Table 2. Summary of themes, approaches, and notable results and theoretical contributions taken from 
published UHI studies within the PMA.

Theme Approach
Notable results and theoretical contributions  

(associated papers; surface UHI papers are italicized)

Physical study Description and spatial 
mapping of UHI

Rapid growth of UHI extent in conjunction with urbanization (Gordon 1921;  
Hsu 1984; Brazel et al. 2007)

Distinct “oasis” effect of lower daytime urban core temperatures relative to 
desert (Balling and Brazel 1987; Brazel et al. 2000; Georgescu et al. 2011)

Assessment of geostatistical accuracy of interpolated “soft” data (Lee et al. 2008)

LULC change and time 
series analysis

Significant increase in mean urban minimum temperatures over long time scales, 
but no long-term change in urban maximum temperatures (Cayan and Douglas 
1984; Hansen et al. 1999; Lee and Ho 2010; Svoma and Brazel 2010)

Canopy-layer UHI intensities greatest at night, and under clear and calm 
conditions (Brazel and Johnson 1980; Fast et al. 2005; Stabler et al. 2005; 
Hedquist and Brazel 2006; Sun et al. 2009)

Surface and canopy-layer UHI intensities strongly related to LULC type, with 
lowest temperatures over vegetated surfaces (Brazel and Johnson 1980;  
Balling and Brazel 1988, 1989; Stoll and Brazel 1992; Stabler et al. 2005;  
Hartz et al. 2006b; Chow and Svoma 2011)

Larger ΔT
u-r

 magnitudes when “rural” LULC is agricultural/grass vs. desert  
(Hawkins et al. 2004)

Wind and topoclimate 
impacts

Complex topography induces katabatic flows directly affecting diurnal UHI 
dynamics, possibly diminishing influence of thermally driven UHI circulations 
(Gordon 1921; Balling and Cerveny 1987; Brazel et al. 2005; Sun et al. 2009; 
Fernando 2010)

Multiscale urban climate 
modeling

Strong influence of thermal admittance, building geometry and vegetation on 
microscale temperatures (Brazel and Crewe 2002; Chow et al. 2011)

Reasonable accuracy of “urbanized” mesoscale climate modeled near-surface 
temperatures with observed data over different seasons  
(Grossman-Clarke et al. 2005, 2008; Georgescu et al. 2008, 2009a,b)

Use of coupled UCM–Noah–Weather Research and Forecasting (WRF) model 
improves agreement between observed and modeled near-surface temperatures 
(Grossman-Clarke et al. 2010)

Biophysical impacts Human discomfort and 
impacts on flora/fauna

Detrimental impacts on human comfort and on flora/fauna development  
(Baker et al. 2002; Hartz et al. 2006a)

More residential heat-related dispatch calls in conjunction with larger UHI 
intensities (Golden et al. 2008)

Spatial analysis of urban 
heat vulnerability

Urban heat vulnerability increased with larger UHI intensities, with significant 
socioeconomic variations over different spatiotemporal scales (Harlan et al. 
2006; Jenerette et al. 2007; Ruddell et al. 2009; Buyantuyev and Wu 2010 ; Jenerette 
et al. 2011; Chow et al. 2012)

Impacts on urban water 
and energy use

Increasing UHI intensity results in greater energy demand from increased air 
conditioning use within residential and commercial sectors (Golden 2004;  
Golden et al. 2006)

Within transportation sector, significant increases in evaporative hydrocarbon 
emissions were linked to UHI (Otanicar et al. 2010)

Residential water use and demand is positively correlated to UHI intensity  
(Balling and Gober 2007; Guhathakurta and Gober 2007, 2010)

Sustainable mitigation “Green” landscaping Vegetated (“green”), non-native landscaping in residential suburbs significantly 
lower urban temperatures, but sustainability has been questioned  
(Gober et al. 2010; Chow and Brazel 2012)

Modifying thermophysical 
characteristics of 
materials

Increasing surface emissivity and albedo are potentially effective in reducing 
daytime and nighttime urban temperatures  
(Emmanuel and Fernando 2007; Gui et al. 2007; Silva et al. 2009, 2010)

Shade canopies with photovoltaic cells reduce daytime urban temperatures and 
can also contribute to local sustainability (Golden et al. 2007)
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Roth 2007). Two examples 
include the confirmation 
that ΔTu–r occurs under 
clear and calm weather 
conditions and the strong 
correlation between LULC 
change from urbanization 
with UHI extent and in-
tensity (Fig. 5). There were, 
however, severa l novel 
theoretical contributions. 
Researchers based in the 
PMA considered method-
ological implications of 
UHI data accuracy through 
assessing geospatial inter-
polations of soft data (Lee 
et al. 2008) and also by 
examining the influence of 
the “rural” definition when 
evaluating magnitudes of 
ΔTu–r (Hawkins et al. 2004). 
Further, the PMA is sited 
within notably complex ter-
rain, which greatly enables 
insights into topographic 
impacts on UHI intensity (e.g., through dynamic, 
large-scale katabatic flows; Brazel et al. 2005). Finally, 
the fine spatiotemporal quality of observational urban 
meteorological data also permits useful evaluations 
of climate model performance, especially when the 
focus is on testing urban parameterization schemes 
(Grossman-Clarke et al. 2010) or on how historical 
urban development alters surface energy budgets and 
thermodynamics (Georgescu et al. 2009a,b).

The second theme encompasses research into the 
local biophysical impacts arising from the growing 
UHI. Studies associated with this theme largely 
occurred after the understanding of local UHI physi-
cal processes matured, with the first paper being 
published in 2002. Relevant approaches included on 
1) how UHI directly impacts flora and fauna health; 
2) how human vulnerability to heat is exacerbated by 
the UHI (i.e., the relationship between a population’s 
physical exposure to increasing temperatures with its 
adaptive capacity to this hazard); and 3) how elevated 
urban temperatures influence energy and water use. 
An important methodological characteristic was that 

studies within this theme generally analyzed physical 
data in conjunction with quantitative socioeconomic 
data obtained from a variety of sources (e.g. academic 
surveys, municipal governments, or the U.S. Census). 
While there were several issues of data compatibility 
arising from this approach (e.g. spatiotemporal dis-
connect between census tract and station/traverse 
temperature data), the findings and conclusions from 
these studies are largely robust and are important con-
tributions towards quantifying the detrimental physi-
cal and social impacts of UHI on PMA residents.

The previous research theme also influenced the 
concurrent, and complementary, study of sustain-
able UHI mitigation. Through largely prognostic 
numerical modeling methods, studies generally 
explored questions related to urban sustainability1 
(i.e., how would altering the urban environment 
benefit local residents with respect to the UHI?). 
Existing approaches developed elsewhere about 
UHI mitigation (e.g., engineering and landscaping 
changes through modification of albedo and building 
thermophysics, and from “greening” the urban 

Fig. 5. Mean monthly (Jun) minimum air temperature patterns interpolated 
through ordinary kriging over 5-yr periods in the PMA: (a) 1990–94, (b) 
1994–99, (c) 2000–04. Temperature data were taken from 37 stations distrib-
uted throughout the PMA (Source: Brazel et al. 2007). The increase in UHI 
spatial extent is especially evident when compared to Fig. 3.

1	 A sustainable city can be defined as a settlement that is designed, built, and managed in ways that, over time, are able to 
improve human health, quality of life, and commerce without excessive consumption of natural resources (Martin 2008). 
This implies that municipal governments and residents attempt to prioritize environmental considerations equally with social 
and economic issues, and also aim for resource use efficiency for societal benefit (Mills 2006).
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landscape) were tested and evaluated. An important 
contribution to sustainable urban climate knowledge 
involves assessing the local effectiveness of urban 
forestry in the PMA. As clearly documented in other 
North American cities (e.g. Rosenzweig et al. 2009), 
increasing urban vegetation significantly reduces 
microscale surface and canopy-layer temperatures. 
The utility of greater urban greenery in Phoenix, 
however, would potentially be offset by increased 
municipal water usage, which is a scarce resource in 
a desert environment. As per capita residential water 
use in Phoenix is significantly higher compared to 
other U.S. cities [856–1,514 liters (226–400 gallons) 
vs. the daily U.S. per-capita average of 379 liters 
(100 gallons); Yabiku et al. 2008], widespread urban 
forestry that is generally applicable elsewhere would 
likely increase this desert city’s vulnerability to 
drought (Morehouse et al. 2002).

Finally, a complementary review of the chronologi-
cal development of UHI research (from 1921 to 2012) 
revealed interesting epistemological developments, 
especially from “pure” to applied research approaches 
(Fig. 6). Initially, researchers defined, explained, and 
modeled UHI physical characteristics via inductive 

methodologies based on singular 
scientific disciplines. Subsequently, 
applied UHI research ensued that 
1) evaluated its impacts on urban 
residents and 2) assessed sustainable 
mitigation methods. The research 
questions and objectives of these latter 
themes were also largely driven by re-
sults and conclusions from earlier re-
search. As a consequence of initiatives 
stemming from CAP-LTER, these 
applied studies also generally utilized 
interdisciplinary methods arising 
from researchers with social science 
and engineering backgrounds. In due 
course, a greater volume of research 
gradually used deductive epistemolo-
gies formulated upon prior gener-
alizations and theory, reflecting the 
maturity of UHI study in the PMA.

POLICY APPLICATIONS OF 
UHI RESEARCH. Given its broad 
themes and theoretical contributions, 
coupled with the varied motivations 
underpinning UHI research, it is un-

surprising that ensuing municipal policies have been 
successfully applied towards addressing its detrimen-
tal impacts. In recent years, several city governments 
within the PMA actively utilized UHI research findings 
to implement policies to enhance urban sustainability. 
Specific policy aims largely involved techniques that 
1) concurrently reduce UHI intensities, energy, and/or 
water consumption within local neighborhoods and  
2) improve thermal comfort and air quality at street 
levels. These urban climate improvements were for-
malized and managed through design plans for future 
urban growth and development. In general, these plans 
proposed appropriate building forms, street design, 
urban forestry, shade structures, and development 
standards for sustainable residence in a desert city.

Two examples from the City of Phoenix are 
particularly i l lustrative. First, the Downtown 
Phoenix Urban Form Project (http://phoenix.gov 
/urbanformproject/) was a collaborative process in-
cluding planners, scientists, and municipal officials 
that explicitly discussed thermal benefits arising 
from optimal building forms and massing stan-
dards, reflective paving and street materials, as well 
as supplementary shading structures at street level.2 

Fig. 6. The chronological development of major UHI research themes 
and approaches (within dashed rectangle boxes) with their contribu-
tions to knowledge development of the PMA UHI. Initially, conclu-
sions arising from physical study of the UHI drove research into its 
1) biophysical impacts and 2) sustainable mitigation, while study into 
both these latter themes often had complementary research drivers. 
The transition of single-discipline to interdisciplinary research is 
reflective of the maturity of UHI study in the city.

2	 One of the authors (DB) was the principal planner for the City of Phoenix Planning Department and was tasked as the project 
manager for the submitted plan.
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Ultimately, the project proposed future urban zoning 
policies and codes aimed at reducing heat discom-
fort within the city core (City of Phoenix 2008) (see 
sidebar). Second, the Tree and Shade Task Force devel-
oped a plan (SHADE Phoenix) providing a roadmap 
towards an average of 25% shade canopy coverage for 
the entire city by 2030 (http://phoenix.gov/PARKS 
/shade.html). Based on existing local research into 
the benefits of urban green spaces towards thermal 
comfort in Phoenix, the task force recommended 
the judicious use of urban forestry techniques (i.e., 
using drought-resistant f lora and physical shade 
structures to mitigate UHI; City of Phoenix 2010). 
Recommendations from both plans were adopted by 

the Phoenix City Council within the same year that 
each plan was published.

Other initiatives and policies explicitly aimed at 
mitigating UHI also existed in extensively developed 
residential suburbs. Several municipal govern-
ments (e.g., the cities of Chandler, Glendale, Peoria, 
Scottsdale, and Tempe) actively promoted urban 
sustainability by encouraging homeowners with 
extensive mesic landscaping to convert to low-water 
demand xeric vegetation (“xeriscaping”) (Fig. 7). For 
instance, as part of a larger sustainability initiative, 
the City of Mesa implemented a popular rebate policy 
in 2007 that offered $500 for homeowners to convert 
at least 46.5 m2 (500 square feet) of existing mesic 

THE DOWNTOWN PHOENIX URBAN FORM PROJECT

In 2006, the City of Phoenix initi-
ated the Downtown Phoenix Urban 

Form Project. Its purpose was to 
examine current development pat-
terns and to identify the “urban form” 
that development should take as the 
downtown core evolves over the next 
20–30 years. A key component of the 
future urban form focused on how 
both modifying the existing environ-
ment and guiding the form of new 
development can be used to mitigate 
UHI. Reducing urban temperatures 
was critical to the long-term success of 
the project because the UHI strongly 
exacerbates the current undesirable 
pedestrian environment resulting from 
the natural hot arid environment.

A partner in the consultant team, 
Studio MA Architects, led the process 
of researching current UHI conditions 
in downtown and ultimately in prepar-
ing development standards. Previous 
research conducted by numerous Ari-
zona State University (ASU) scientists 
was an invaluable resource in facilitating 
understanding of the UHI phenomenon 
in Phoenix. The existing theoretical 
knowledge greatly minimized the addi-
tional work necessary for the consultant 
to complete.

New, location-specific research 
at downtown was conducted by the 
partner, augmented by input from ASU 
researchers familiar with the UHI that 
were now working with the consultant 
team. The major activity undertaken 
was to conduct both canopy-layer and 
surface temperature measurements at 

Fig. S1. Present-day streetscape (2nd Ave.) in down-
town Phoenix, illustrating the influence of sustainable 
street-level shading. Previously, a single strip of palm 
trees provided little pedestrian shade. To increase 
thermal comfort and reduce daytime urban ambient 
temperatures, the Downtown Phoenix Plan recom-
mended planting 1) a double row of broad canopy, 
low-water demand trees to increase shading and 2) low 
shrubs or screens to reduce pedestrian exposure to 
longwave radiation emitted from the adjacent asphalt 
road (Source: City of Phoenix 2008).

critical points within downtown. The 
team was interested in microscale tem-
perature variations arising from urban 
and natural materials located in direct 
sunshine versus shade, as well as on 
the influence of color on the material 
temperatures. The results of the 
partner’s research not only addressed 
the preferred choice of urban materials 
but also aided understanding on related 
issues such as wind movement, building 
massing, street-level shading options 
(Fig. S1), and the cooling impacts of 
incorporating veg-
etation and water 
into the project 
designs. These 
studies also greatly 
contributed to a 
design strategy 
that improves pe-
destrian thermal 
comfort by incor-
porated several 
cooling elements 
(e.g. building wall, 
tree, and walkway 
shading; effec-
tive ventilation; 
and evaporative 
moisture misters), 
which potentially 
reduces outdoor 
standard effective 
temperatures by 
~15°C (27°F) in 
summer.

This research 
culminated in the 

preparation of “Chapter 4: Sustainable 
Development in a Desert Climate” of 
the plan (City of Phoenix 2008). This 
chapter identified specific recommen-
dations for addressing UHI mitigation 
and pedestrian comfort in the process 
of preparing a form-based code for 
downtown. A major benefit resulting 
was that, depending on the local urban 
form and LULC, the recommenda-
tions could also be applied to develop-
ment throughout the Phoenix and the 
broader metropolitan area.
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landscaping to xeriscaped yards (City of Mesa 2010). 
These cities work in conjunction with the Arizona 
Department of Water Resources, which provides an 
informative database of drought-resistant plants for 
residential homeowners in the PMA (www.azwater 
.gov/azdwr/StatewidePlanning/Conservation2 
/Residential/Outdoor_Residential_Conservation 
.htm#resoutdoorlandscape). A common aim among 
these municipal programs is towards reducing 
residential water consumption, while simultaneously 
maintaining a comfortable microscale thermal envi-
ronment for homeowners.

These UHI mitigation policies can complement 
other urban responses to detrimental impacts arising 
from anthropogenic global warming, considering that 
alterations to regional weather and climate proper-
ties from cities have long been viewed as an analog 
for global climate change impacts (Changnon 1992). 
While the influence of the UHI on increases in the 
recent global temperature record is relatively minor 
compared to greenhouse gases, increased urban 
metabolism (e.g., urban transportation and energy 
generation emissions) and urban drivers of LULC 
change (e.g., suburban residential construction and 
deforestation) are problematic net sources of green-
house gas emissions. The important corollary is that 

cities can also generate solutions via effective manage-
ment of urban resources that reduces CO2 emissions 
(Mills 2007). Thus, policies promoting sustainable 
mitigation of UHI at local/city-wide scales could 
potentially be beneficial at larger spatial scales.

CONCLUSIONS. Our review illustrates that 
Phoenix is an interesting case study for applied UHI 
research, especially in terms of how interest in this 
meteorological phenomenon from different stake-
holders helped precipitate its study. More importantly, 
research results greatly aided in effecting municipal 
policies aimed at improving urban sustainability at 
the local scale of both its downtown and residential 
neighborhoods. Despite the hitherto prodigious study 
of PMA UHI, we also note that further developments 
could be recommended, such as the following:

1)	 Greater emphasis on translating UHI research re-
sults as an educational resource to schools, which 
would increase its awareness among youths and 
teachers. There has been recent and welcome work 
on this, with CAP-LTER developing educational 
UHI resources for both middle school children 
and educators through outreach programs and a 
specific Internet presence (Elser et al. 2011).

2)	 Specific research into urban boundary-layer 
and subsurface UHI, both of which are scarce 
compared to other UHI types. Results would be 
important for the development of urban climate 
model parameterization and physics.

3)	 Continued monitoring and assessment of costs 
and benefits of post-UHI policy action in PMA 
cities. For instance, would the economic costs of 
implementing the downtown Phoenix plan be 
offset by the benefits in increased visitors and 
commercial revenue from a more comfortable 
urban environment over the short and long term? 
If substantial economic benefits are assessed, it 
would present a persuasive argument for gov-
ernmental policy makers to be more cognizant of 
UHI impacts, as well as allocate more resources 
towards its mitigation.

In conclusion, a seminal article by Oke (2006) 
recognized that the scope of urban climatology was 
then well represented in terms of conceptualization, 
theorization, field observation, and statistical, scale, or 
numerical modeling, but model validation, urban de-
sign planning and application, impact assessment, and 
policy development were relatively lacking. Our review 
of the motivations behind PMA UHI research (which 
includes a large degree of successful interdisciplinary 

Fig. 7. Typical (a) mesic to (b) xeric residential land-
scaping in the PMA. The “xeriscaping” policy promoted 
by several PMA cities involves landscape conversion of 
water-intensive plants to low-water-demand, drought-
resistant vegetation (Source: CAP-LTER).
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collaboration), as well as its varied theoretical contri-
butions across different themes and successful policy 
application examples, shows that active work done in 
this city is significant in filling this knowledge gap. 
Finally, although this review focuses on UHI research 
in a single city, we hope that our work could also pro-
vide useful—and possibly applicable—information 
to interested stakeholders, such as researchers across 
(social) scientific disciplines and officials interested in 
applying research towards sustainable urban climate 
policy in other cities with different climates.
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