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Abstract The impacts of land-cover composition on
urban temperatures, including temperature extremes, are
well documented. Much less attention has been devoted to
the consequences of land-cover configuration, most of
which addresses land surface temperatures. This study
explores the role of both composition and configura-
tion—or land system architecture—of residential neigh-
borhoods in the Phoenix metropolitan area, on near-surface
air temperature. It addresses two-dimensional, spatial
attributes of buildings, impervious surfaces, bare soil/
rock, vegetation and the “urbanscape” at large, from 50 m
to 550 m at 100 m increments, for a representative 30-day
high sun period. Linear mixed-effects models evaluate the
significance of land system architecture metrics at different
spatial aggregation levels. The results indicate that,
controlling for land-cover composition and geographical
variables, land-cover configuration, specifically the fractal
dimension of buildings, is significantly associated with
near-surface temperatures. In addition, statistically sig-
nificant predictors related to composition and configura-
tion appear to depend on the adopted level of spatial
aggregation.

Keywords land system architecture, urban heat island
effect, linear mixed-effects models, near-surface air tem-
perature, land-cover configuration

1 Introduction

Urban and regional “metroplex” heat island (UHI) effects
are expected to grow in intensity and aerial extent with

increasing global urbanization and climate warming (e.g.,
Georgescu et al., 2014; Wang and Akbari, 2016). These
changes, in turn, hold numerous consequences for human
health, energy and water consumption, and biotic diversity
(e.g., Akbari et al., 2001; Guhathakurta and Gober, 2010;
Faeth et al., 2011; Hondula et al., 2013), amplifying
attention to the mitigation of extreme heat, especially
among cities in warm climates. Redesigning the composi-
tion and configuration of “cityscapes” and urban-rural
landscapes— variously labeled the land system architec-
ture (Turner et al., 2013), landscape mosaics (Forman,
1990), or urban morphology/geometry (Stewart and Oke,
2012)— constitute a mitigation option. A variety of
research demonstrates the significance of land composition
on urban temperature, including land surface and within
and above the urban boundary layer temperatures (e.g.,
Cermak et al., 2017). For example, the concentration of
buildings and impervious surfaces amplifies temperatures
(e.g., Stone and Rodgers, 2001; Nichol et al., 2009; Krüger
et al., 2011; Yang et al., 2011). In contrast, cool or green
roofs (Gill et al., 2007; Jacobson and Ten Hoeve, 2012;
Georgescu et al., 2014) and the vegetation or green space
fraction (e.g., Akbari et al., 2001; Wong and Yu, 2005;
Bowler et al., 2010; Li et al., 2011; Zhou et al., 2011;
Akbari and Matthews, 2012; Li et al., 2012) attenuate
temperature extremes. In addition to these land-cover
composition characteristics, evidence mounts that the
configuration of the land system— the pattern and shape
of individual land covers or their mosaics— affects urban
temperatures as well (Xiao et al., 2007; Zhou et al., 2011;
Li et al., 2012, 2016, 2017; Maimaitiyiming et al., 2014;
Huang and Cadenasso, 2016).
The heat vulnerability of neighborhoods is a significant

concern for the metropolitan area of Phoenix, Arizona
(USA), where maximum summer daytime temperatures
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routinely exceed 40°C in summer and have reached 50°C
(122°F) (Middel et al., 2012). As such, considerable local
climate and UHI research on the metropolitan area has
been undertaken (e.g., Baker et al., 2002; Grimmond,
2007; Jenerette et al., 2011, 2016; Chow et al., 2012),
largely focused on land surface temperature and the
composition of land covers (Harlan et al., 2006; Gober et
al., 2010; Grossman-Clarke et al., 2010; Myint et al., 2010;
Li et al., 2011; Chow and Brazel, 2012; Connors et al.,
2013; Myint et al., 2013). These efforts, consistent with
research elsewhere, indicate that the amount of land cover,
foremost that of impervious surfaces, vegetation, and bare
soil, affect daytime and nighttime land surface tempera-
tures. Increasingly, however, the role of the configuration
of land units, in tandem with their composition, on land
surface temperatures draws attention. This orientation,
referred to here as land system architecture, examines the
influence on temperature created by the pattern and shape
of land covers at fine-grain, spatial resolutions. It treats
multiple land covers in more compositional detail than
urban morphological approaches in urban climatology, but
to date, lacks the vertical dimensions of the composition in
morphological approaches that permit assessments of
turbulent sensible and latent heat flux (Turner, 2016).
Investigations falling within the umbrella of land archi-
tecture reveal that compactly shaped clustering of certain
land covers, from the sub-parcel to aggregate levels of
assessment, prove to be as important for land surface
temperature as the overall amount of space devoted to
those covers (Myint et al., 2015, 2016; Li et al., 2016,
2017; Zhang et al., 2017).
Less attention has been given to the role of land system

architecture at large (as opposed to specific objects, such as
building and trees) on temperature within the urban
boundary layer (i.e., near-ground or near-surface tempera-
ture> 2 m above the land surface but below the rooftop).
While nighttime temperatures in this layer may mirror
somewhat those of the land surface, significant differences
commonly exist during the day (Voogt and Oke, 2003),
demonstrated for Phoenix, AZ (Stoll and Brazel, 1992).
Middel et al. (2014) identified urban form, including that
of the land system, as having a large impact on daytime
above-ground temperature extremes in the Phoenix metro-
area. In addition, Myint et al. (2010) and Lindén (2011)
examined the role of land-cover fractions (i.e., land-cover
pattern) on selected near-ground station air temperatures
for the Phoenix area and Ouagadougou, Burkina Faso
(semi-arid steppe climate of the Sahel), respectively. For
the most part, however, the poor spatial match between
near-ground temperature data and the complex and
heterogeneous character of urban land-cover data impedes
examinations of the details of fine-resolution, land-cover
configuration, both pattern and shape.
In-situ weather stations provide near-ground tempera-

tures with fine temporal resolution that accurately reflect
the extreme temperatures (Myint et al., 2010; Chow et al.,

2011, 2014; Chow and Brazel, 2012). The small number
and large spacing of weather stations, however, constrain
the utility of these data for the examination of land
architecture-temperature relationships in highly heteroge-
neous urban land systems. Several past studies have used
point weather station sites (at heights of 2 m), adopting the
World Meteorological Organization’s urban area siting
criteria (e.g., Oke, 2006, typically 500 m around a site), but
have not focused on land-cover configuration per se. The
location of urban flux towers (above the urban canopy)
provides data to calculate or estimate source regions of
fluxes based on wind rose and stability criteria. The size of
area for which temperatures is generated vary, however,
owing to the height of the sensors, commonly on towers
30 m above ground level or on top of buildings. As such,
the size of the temperature area, including the temperature
estimates generated from the tower measurements, are
typically larger than the parcel on which the towers are
located, registering the aggregate results from multiple
land covers.
This study expands the land system architecture research

on the Phoenix metropolitan area by linking fine-resolution
(1 m) land-cover data to near-ground temperature (within
the urban canopy) data, recorded on individual parcels
across 44 residential areas. It seeks to determine if and how
land composition and configuration (i.e., land architecture)
affect daytime and nighttime near-ground temperature
among single-family residences in the metroplex and at
what spatial scales the relationships, if any, are more
significant.
Standardized buffers of 50 m to 550 m in 100 m intervals

around residential weather stations provide the base areas
of assessment of the near-ground temperature data,
matched by land-cover data derived from 1 m NAIP 4-
band imagery. Following the work on land architecture and
land surface temperature in the Phoenix metropolitan area
(above), our working hypothesis projects fine-resolution
land-cover configuration, in addition to land composition,
affects near surface temperatures, and does so differentially
at different times of the day. While the evidence mounts for
the roles of land-cover configuration— for instance,
increasing patch density of compactly shaped vegetation
generating significant cooling effects in arid environ-
ments— the depth of this understanding relative to
configuration metrics across varied land covers is sparse,
especially applied directly to near-ground temperature.

2 Data and methods

2.1 Study area

The central Arizona-Phoenix metropolitan area (Fig. 1)
covers more than 7600 km2 of the northern Sonoran Desert
in Maricopa County (Wentz et al., 2006; Connors et al.,
2013). The area experiences a subtropical desert climate

446 Front. Earth Sci. 2019, 13(3): 445–463



with hot summers and warm winters. Phoenix and its
surrounding cities have witnessed dramatic urban sprawl,
especially since the middle of the last century. A large
majority of this sprawl constitutes residential housing
conforming to the LCZ6 zone defined by Stewart et al.
(2014). The resulting residential neighborhoods comprise
openly arranged buildings, in this case overwhelmingly
one story creating uniformity in their vertical dimension,
with adjacent trees and other vegetation rarely exceeding
the height of the buildings.
This growth and desert location increases human

exposure to extreme temperatures (Chow and Svoma,
2011; Chow et al., 2012). For example, the average June
maximum air temperature is 40°C (104°F) and minimum,
22.7°C (72.9°F). Brazel et al. (2000) and Grossman-Clarke
et al. (2010) have shown an emerging heat island within
the metro area since the 1970s with magnitude of some
5°C–10°C, the largest distinction with the ambient, rural
temperature occurring at night. Recent assessments,
however, indicate that Phoenix metro-area neighborhoods

are 2°C–3°C cooler than urban surfaces (e.g., Phoenix
airport site, the central business district) all day; 2°C–6°C
cooler during the day than other sites, but 2°C–8°C warmer
at night than open city park, rural agriculture and desert
locales (e.g., Li et al., 2017).

2.2 Remotely sensed data

The National Agricultural Imagery Program (NAIP) four-
band (red, green, blue, and near inferred band) orthophoto
mosaic data were used with an object based image analysis
(OBIA) to produce a 1 m resolution land-cover map for
Phoenix (Fig. 1) (Li et al., 2014). The original NAIP
imagery comprises 59 digital ortho quarter quad tiles
(DOQQs) covering 3.75 by 3.75 minute quarter quad-
rangle with a 300 m buffer, 90% of which were taken
during June 6–10, 7% on August 15, and 3% on September
9, 2010. The imagery was pre-processed with pixel-based
spectral transformation including principal component
analysis (PCA), RGB (red, green, and blue) to HIS (hue,

Fig. 1 The Phoenix, AZ, metropolitan area. The boundaries and names identify the cities in the metroplex. The residential study sites
correspond to the 44 selected weather stations.
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intensity, and saturation) color space values, and spatial
enhancement, including convolution and morphological
functions. The transformed data and original four-band
aerial photos were stacked together as input for object-
based classification. Expert-knowledge decision rules
guided the OBIA method, assisted by cadastral parcel
vector data.
Using a hierarchical image object network, four types of

segmentation (multi-resolution, multi-threshold, Quadtree
based, and chessboard segmentation) and classification
algorithms were grouped into rule sets for characteristics
selection using spectral, spatial, geometrical, and con-
textual information and image object identification. Due to
the large volume of data, each of the 59 DOQQs were
executed with OBIA rule sets using the tilting analysis in
the workspace of Definiens software. Morphological
operators (erode to perform focal minimum analysis and
dilate to perform focal maximum analysis), used before
and after the OBIA and post-classification editing, further
improved the land-cover mapping accuracy. The Mosaic-
Pro module in ERDAS software mosaicked the 59 DOQQs
into one image using the “Most NidarSeamline” generation
method to fill the gaps between the DOQQs.
Twelve land-cover classes were identified, six of which

are employed in this study— building, road, bare soil/rock,
tree/shrub and grass— that comprise the overwhelming
area of residential parcels— and swimming pools (i.e.,
water), which account for less than 1% of residential
parcels. These six land-covers generate producer and user
accuracies of 86.52% to 98.04% and 88.35% to 98.04%,
respectively. Swimming pools do not exist on all
residential parcels: for this reason, pools were not included
in the set of explanatory variables of the predictive models,
although the presence of pools was a statistically
significant predictor for both daytime and nighttime land
surface temperatures in previous studies (Li et al., 2017).
Driveways and bare soil/rock constitute one class because
of the similarities in their signal signatures.

2.3 Air temperature data

WeatherUnderground, which includes MesoWest stations,
provided 3-hourly air temperature and wind data from 44
automated weather stations located in residential areas of
the metropolitan region. A larger number of stations
recording data and covering a greater range of single-
family residential neighborhoods exists for 2011 than for
2010, prompting the use of the 2011 weather data applied
to the 2010 land-cover data.
Measurements correspond to a pre-monsoon period

(June 1–30, 2011) which were exemplary of summer
conditions (high sun) not overly affected by rainfall,
clouds, or strong winds (Brazel et al., 2007): the air mass
was dry tropical, which is experienced 70% of the time in
June. Such conditions are highly suitable for air tempera-
ture assessments related to land architecture and are

difficult to encounter for monthly periods during other
seasons in the Phoenix area. For June 2011, our sample
period, 27 of 30 days (90% of time) were classified as dry
tropical, a stable atmospheric state in which minimal
disturbance, if any, exists between land surface (i.e., land
cover) and near ground temperatures above that surface.
For the most part, wind speeds at study sites were very low
at night and not more than 2–2.5 m/s during daytime. Fast
et al. (2005) advocate that winds in this range lead to
microclimate temperature variability and heat island
conditions. The analysis that follows employs air
temperature data that correspond to wind speeds less than
6 m/s; removed from analysis were observed temperatures
associated with stronger winds.

2.4 Land architecture metric calculation

Metrics indicative of land-cover composition and config-
uration were calculated using FRAGSTATS 4.2 (McGar-
igal et al., 2012) for individual land-cover classes (e.g.,
vegetation) and for their aggregate or landscape condition.
Buffer zones around each weather station with radii
ranging from 50 m to 550 m, at 100 m intervals served
as the spatial support of calculation. Five metrics were
computed for each land-cover type: percent of land-cover
type (PLAND) for land composition, and patch density
(PD), edge density (ED), landscape shape index (LSI) and
fractal dimension index (FRAC) for land configuration
(Table 1). PLANDmeasures the fraction of patches of each
land-cover type within a unit, while the spatial configura-
tion metrics characterize the shape complexity and spatial
distribution of patches in the unit (Table 1). Two additional
configuration metrics, namely Contagion (CONTAG) and
Shannon’s diversity index (SHDI), capture the aggregated
architecture of land patches (Table 1). Assessments of land
surface temperature commonly employ these five metrics,
which capture important dimensions of configuration, both
pattern and shape; many other FRAGSTATS metrics
overlap the dimensions generated by the five employed
and were not employed.
The temperature data and land architecture metrics

corresponding to the buffer zones for each station were
matched. Figure 2 presents three samples of weather
stations (KAZCHAND23 in the city of Chandler, KAZ-
GLEND17 in the city of Glendale, and KAZPHOEN110 in
the city of Phoenix) with different spatial scale buffers.
These three samples represent mesic (lawn turf), xeric
(desert-scape), and in-between mesic-xeric residential
neighborhoods respectively.

2.5 Statistical analysis

Linear mixed-effects models (LMM) were developed to
assess the significance of land architecture metrics. In the
exploratory stage of the analysis temperatures measured at
location s, denoted by Ts, were modelled using two site-
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specific regression models that captured the diurnal
patterns and the increasing trend of temperatures in June.
Both models were based on linear trend terms; the first
encapsulated diurnal patterns using sinusoidal terms:

T̂ sðtÞ ¼ β0,s þ β1,ssinð2πhðtÞ=24Þβ2,scosð2πhðtÞ=24Þ

þβ3,sdðtÞ: (1)

In Eq. (1), T̂ sðtÞ denotes predicted temperatures at site s,
during the h(t)th hour of the d(t)th day in the sample. The
slopes β3,s capture site-specific linear trends and the diurnal
patterns are expressed by the predictors that correspond to
β1,s and β2,s: The four site-specific coefficients β0,s, β1,s,
β2,s, β3,s were estimated by least squares.
The second specification was more flexible (and less

parsimonious) as it represented diurnal profiles based on
dummy variables:

T̂ sðtÞ ¼
X8

i¼1

�
βi,sI

�
hðtÞ ¼ 3i

��
þ β9,sdðtÞ: (2)

Eq. (2) is based on the characteristic function with

IðhðtÞ ¼ 3iÞ ¼ 1 if hðtÞ ¼ 3i and I
�
hðtÞ ¼ 3i

�
¼ 0 if

hðtÞ≠3i; as i increases the dummy variables correspond to
different time periods. The model presented in Eq. (2)
provided superior predictive power relative to Eq. (1).
Hence, subsequent analyses were based on that specifica-
tion. Correlations between coefficients that capture loca-
tion-specific trends and diurnal profiles in Eq. (2) with land
architecture metrics and geographical coordinates were
calculated for different (spatial) aggregation intervals. This
part of the exploratory analysis guided the model building

procedure of LMM.
LMM are generalizations of site-specific regression

models, which may summarize temperature dynamics
observed at multiple locations. Mixed-effects models
contain fixed and random effects: fixed effects denote
‘average’ model parameters whereas random effects
represent site-specific deviations from ‘average’ dynamics.
LMM can be used for site-specific inference and forecast-
ing when estimates at both levels (fixed and random
effects) are taken into account. LMM also predict
temperatures at sites not included in model estimation,
based solely on the coefficients that correspond to fixed
effects; such predictions apply to sites for which model
estimation is infeasible due to insufficient data.
A general LMM based on Eq. (2), henceforth called

LMM0, is formulated as:

TsðtÞ¼
X8

i¼1

ðβi þ bi,sÞIðhðtÞ ¼ 3iÞ þ ðβ9 þ b9,sÞdðtÞ þ εsðtÞ

bi,s � Nð0,ψ2
i Þ,Covðbi,s,bj,sÞ ¼ ψi,j, i,j ¼ 1,:::,9, i≠j

εsðtÞ � Nð0,�2lsÞ,CovðεsðtÞ,εsðt – kÞÞ ¼ �2lsk: (3)

The fixed effects coefficients βi constitute the mean
values of the diurnal profiles and the linear trend
parameters across all measurement sites. Random effects
bi,s, i ¼ 1,2,:::,9 (with s denoting measurement site)
express site-specific deviations. Random effects are
assumed to follow a multivariate normal distribution
with variances ψ2

i and covariances ψi,j; ψ will denote the
resulting covariance matrix. The site-specific error terms

Table 1 Land architecture metrics

Metric/abbreviation Description Class specific metrics Aggregated parcel metrics

Percent cover of a land-cover class/
PLAND

Proportion of the land-cover type (patch type) on the
unit landscape plot (0<PLAND£100)

PLAND of Building, Soil, Soil,
Tree/Shrub, Grass

N/A

Patch density/PD Number of patches/ha (> 0, determined by grain or
pixel size)

PD of Building, Soil, Soil,
Tree/Shrub, Grass

PD

Edge Density/ED Total length of edges for all patches/ha (≥0, where 0
refers to a landscape composed of one patch)

ED of Building, Soil, Soil,
Tree/Shrub, Grass

ED

Landscape Shape index/LSI Total length of all patch edges divided by the minimum
possible length of the area of the unit landscape plot (≥1,
where the greater the LSI above 1 the more the shape

deviates from a compact shape, i.e., a square)

LSI of Building, Soil, Soil,
Tree/Shrub, Grass

LSI

Fractal dimension/
FRAC

A measure of shape complexity by calculating the
departure of the patch from its Euclidean geometry
(1£FRAC£2, where 1 corresponds to very simple

shapes and 2 to extremely complex shapes)

FRAC of Building, Soil, Soil,
Tree/Shrub, Grass

FRAC

Contagion/CONTAG A measure of adjacency of patches (0<CONTAG£100,
where patches are maximally disaggregated and dispersed

when the values are small; 100 is the reverse)

N/A CONTAG

Shannon’s diversity index/SHDI A measure of the diversity of patches (0 is a landscape
with 1 patch)

N/A SHDI
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εs, are assumed normally distributed and independent of
the random effects. The covariance structure of the error
terms aims to account for remaining serial correlation: the
lsk (k denotes time lags) are derived using an autoregres-
sive specification AR(p).
The null model presented in Eq. (3) can be augmented so

that part of the variability of the random effects is
explained by site-specific environmental and geographical
characteristics. For instance, the specification shown
below, hereafter LMMgeog, contains n1 additional pre-
dictors, denoted by x, which correspond to geographical
coordinates of measurement sites:

TsðtÞ ¼
X8

i¼1

ðβi þ bi,sÞIðhðtÞ ¼ 3iÞ þ ðβ9 þ b9,sÞdðtÞ

þ
Xn1

l¼1

glxl,sþεsðtÞ

bi,s � Nð0,ψ2
i Þ,Covðbi,s,bj,sÞ ¼ ψi,j, i,j ¼ 1,2,:::,9, i≠j,

εsðtÞ � Nð0,�2lsÞ,CovðεsðtÞ,εsðt – kÞÞ ¼ �2lsk ,
(4)

LMMgeog can be further augmented to include land
architecture metrics. For spatially aggregated land archi-
tecture metrics computed using radius r, with r ¼
50,150,:::,550 m, LMMr contains n2ðrÞ additional pre-
dictors, denoted by zðrÞ:

TsðtÞ ¼
X8

i¼1

ðβi þ bi,sÞIðhðtÞ ¼ 3iÞ þ ðβ9 þ b9,sÞdðtÞ

þ
Xn1

l¼1

glxl,s þ
Xn2ðrÞ

m¼1

δmz
ðrÞ
m,sþεsðtÞ

bi,s � Nð0,ψ2
i Þ,Covðbi,s,bj,sÞ ¼ ψi,j, i,j ¼ 1,:::,9, i≠j,

εsðtÞ � Nð0,�2lsÞ,CovðεsðtÞ,εsðt – kÞÞ ¼ �2lsk , (5)

where n2ðrÞ represents the number of statistically sig-
nificant land architecture (composition and configuration)
metrics for radius r. A specification of particular interest is
based on statistically significant land architecture metrics
for all available aggregation radii. This model is designated
by LMMcomb in what follows.
The protocol presented in Zuur et al. (2009) guided the

model building procedure for the LMM presented in Eqs.
(3)–(5). First a regression model was estimated using all
possible predictors after excluding predictors that caused
instabilities due to multicollinearity. A backward stepwise
procedure based on variance inflation factor criterion (VIF;
James et al., 2013) removed collinear predictors:

VIFq ¼
1

1 –R2
q
: (6)

VIF for predictor q was obtained using the coefficient of
determination (R2) from the regression of that predictor
against all other explanatory variables. VIFs were
calculated for each predictor; that with the highest VIF
was removed at each step of the backward procedure,
provided that the condition VIFq>20 was satisfied.
The next step in the model building procedure examined

which of the predictors needed random effects to account
for between-site variability and which could be treated as
purely fixed effects. For instance, if variability of slopes
bs,9 is not significant across measurement locations, the
temporal trends are modeled using solely β9; this finding
implies common trends across measurement sites (in
accordance with prior expectations). Simplified versions
of the general model, with fewer random effects and block-
diagonal covariance structures were evaluated using
likelihood ratio tests. [These tests compare nested models
estimated by restricted maximum likelihood as detailed in
Pinheiro and Bates (2009)]. Once the optimal random
structure was found, the optimal structure for the fixed
effects was decided using likelihood ratio tests. Finally, for
the error terms εsðtÞ, a backward stepwise procedure
evaluated AR(p) specifications with maximum order p = 4.
Fixed-effects represent ‘average’ model parameters

whereas random-effects denote site-specific deviations
from ‘average’ dynamics. In the next section we report
estimated coefficients on standardized variables. These
coefficients represent the effect of a standard deviation
change for a predictor, keeping the other predictors fixed,
and allow us to evaluate the relative significance of the
explanatory variables. Stepwise model building for LMMr

and LMMcomb prioritized geographic and land composi-
tion variables: an explanatory variable related to land
configuration was included in the final specifications, only
if it provided significant additional explanatory power
relative to predictors that represent geographic character-
istics and land composition.
Mixed-effects models can be used to predict near-

ground air temperatures at measurement sites not included
in the original sample; hence, LMM0, LMMgeog, LMMr

and LMMcomb can be evaluated in terms of their general-
ization ability by leave-one-site-out cross-validation. Thus
the significance of land architecture metrics included in
LMMr was assessed by comparing the generalization
ability of LMMr relative to LMM0 and LMMgeog. The
accuracy metrics, reported in the next section, include: 1)
mean error (ME), a measure of bias; 2) median absolute
error (MedAE); and 3) root mean square error (RMSE).

3 Results and discussion

3.1 Exploratory analysis

Figure 3 shows the diurnal patterns of the analyzed near-
ground temperatures, with large differences between
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Fig. 2 Selected samples for buffer zones at different scales.
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daytime and nighttime, in some cases exceeding 15°C. The
increasing trend of temperatures in June is apparent. De-
trended temperatures, derived by subtracting site-specific
linear trends from the original measurements, do not
suggest substantial differences in temperature variability
for nighttime and daytime (Fig. 4). Winds minimally
affected the temperature: measurements confirm low wind
speeds typical of dry tropical clear days in summer (Fig. 4).
Inspection of the wind direction data for all sites revealed a
pattern representative of June, with westerly and southerly
flow off the deserts toward Phoenix (Stewart et al., 2002)
almost all day, with only a couple of sites near the
southeast mountains experiencing some nighttime rever-
sals of wind that transitioned to southwest in the morning.
On average soil occupies 38.5% of the land surface

around the measurement stations. Variability for different
levels of spatial aggregation was minimal compared to
variability across measurement sites. The observed minima
of the percentage of soil across measurement sites were
close to 17% and the observed maxima, close to 73%.
Similar findings (Fig. 5) hold for the average percentages
of buildings (18%), roads (20%), trees/shrubs (12%), and
grass (9.2%). As noted above, pools account for the (small)
remaining percentage of land and were not included in the
statistical models. With regard to shape complexity, it is
worth noting that, on average, the fractal dimension of
buildings was close to 1.1. This figure is lower (revealing
less complex shapes) relative to the remaining land-cover
types, for which fractal dimensions ranged from 1.2 to 1.3.
Figure 6 shows the coefficients of determination for site-

specific regressions presented in Eq. (1) and Eq. (2). The
less parsimonious specification based on dummy variables
explained at least 85%, and at most 96%, of the variability
of near-ground air temperatures. Eq. (1) on the other hand,
explained at least 82%, and at most 94%, of that variability.
Linear trends were deemed adequate given that the
magnitudes of the coefficients of determination are very
close to unity for the regressions in Eq. (2). The estimated
linear trends were statistically significant for all measure-
ment sites and imply an expected daily increase of near
ground temperatures in June that ranges from 0.25°C to

0.45°C (Fig. 6).
Land architecture metrics that strongly correlate with the

slopes of the linear trends and the dummies that capture
diurnal profiles in Eq. (2) are expected to explain part of
the variability of the site-specific random effects in the
mixed-effects models, enhancing the generalization ability
of LMM. In accordance with prior expectations, elevation,
which ranges from 91 to 257 m (300 to 845 ft) above mean
sea level for the examined stations, is strongly associated
with the dummies that correspond to afternoon tempera-
tures. It is worth noting that the fractal dimension of
buildings (FRAC1_50 – FRAC1_550) and the patch
density of soil (PD3_50 – PD3_550) are consistently
negatively associated with nighttime temperatures for all
examined levels of spatial aggregation (Fig. 7). In contrast,
the percentage of buildings is, in general, positively
associated with nighttime temperatures, whereas the
percentage of trees and shrubs is negatively correlated
with nighttime temperatures for all aggregation levels.

3.2 Mixed-effects models

Tables 2–4 present nine mixed-effects models and their
evaluation based on leave-one-measurement-site-out
cross-validation. All quantitative variables were standar-
dized, so that fixed-effects coefficients represent the
estimated effect (on air temperatures) of a standard
deviation change on the levels of the corresponding
predictor, keeping all other predictors fixed (for strongly
correlated predictors this may not be possible in reality). In
contrast with the terms that capture the diurnal profiles,
linear trends do not vary significantly across measurement
sites in all mixed effects models: a common fixed-effect
term is sufficient. The fixed-effects terms of LMM0, based
solely on temporal information, are in conformity with the
diurnal patterns observed in Fig. 4. Elevation is the only
statistically significant geographical covariate in LMMgeog.
As expected, it exerts a negative effect on air temperatures,
and its addition results in improved generalization ability
relative to LMM0 in terms of MedAE and RMSE (Table 2).
It is remarkable, that although their presence was

Fig. 3 Air temperatures observed in 44 stations in the Phoenix metroplex during June 2011.
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prioritized in the model building procedure, predictors
related to landscape composition are not statistically
significant in LMM that correspond to different spatial
aggregation levels (Tables 2–4). On the other hand, the
patch density of soil is a significant configuration predictor
in LMM50 (Table 3); as PD3 increases, the number of soil
patches increases, negatively correlated with afternoon
temperatures (Fig. 7). By adding PD3, however, the
predictive performance of LMM50 in terms of MedAE, did
not improve relative to LMMgeog. For higher levels of
spatial aggregation (r> 50 m), the fractal dimension of
buildings (FRAC1) is a strongly significant predictor for
all LMM (Tables 3–4). This covariate is negatively
correlated with nighttime temperatures (Fig. 7); hence,

more complex shaped buildings are associated with lower
temperatures. LMMcomb is based on the fractal dimension
of buildings calculated using spatial aggregation level of
350 m; the association of near-surface air temperatures
with the fractal dimension of buildings manifests itself
more strongly at this level of spatial aggregation.
The estimated negative effect of FRAC1 in LMMcomb

appears stronger than the standardized effect of elevation
(Table 2). In addition, incorporating FRAC1 into the model
building process improves slightly the predictive ability of
mixed-effects models (Fig. 8). On the other hand, given
information on the fractal dimension of buildings, the
patch density of soil (r = 50), which is positively associated
with FRAC1 (the corresponding Spearman’s correlation

Fig. 4 (a) Distributions of de-trended temperatures across 44 measurement locations. (b) Diurnal pattern of hourly averaged wind speed
(in meters per second) measured at 44 weather stations during June, 2011.
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coefficient equals 0.51), is not a significant predictor in
LMMcomb. Hence, LMMcomb coincides with LMM350.
Compared to the null model LMM0, which is based solely
on temporal information, LMMcomb including predictors
related to geographic information and landscape config-
uration achieves improved generalization ability and
reduced uncertainty regarding the random effects that
correspond to nighttime temperatures.

3.3 Relationship of air temperature and land configuration

The complexity of shape and level of patch density of
different land covers (patches) of residential parcels help to
reduce near-surface temperature, especially at night,
apparently providing more variability in thermal diffusiv-
ity, increasing natural ventilation, and mitigating heat

storage (Cao et al., 2010; Connors et al., 2013). The
increased complexity of the configuration of buildings, in
this case residential houses, appears to be significantly and
negatively associated with late night-early morning and
late afternoon-early evening temperatures, respectively. A
rationale for the late night-early morning result is not clear
to us, but could be due to ventilation increases. The late
afternoon-early evening result, during a period known as
the evening transition (in temperature) suggests that
complexly shaped homes provide multiple shaded spaces.
In general, the larger the residential unit, the more complex
the shape. The link between building shape and tempera-
ture, however, is not related to housing size measured by
spatial area because in the analyzed data, PLAND1 is
actually negatively correlated with FRAC1 (Spearman’s
correlation metric equals –0.41 at 350 m). While perhaps

Fig. 5 Distributions of the percentage of buildings (a), roads (b) and grass (c) across measurement sites, for different levels of spatial
aggregation.
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surprising, the conservative modeling strategy employed,
which requires strong evidence against the null hypothesis
of non-significant effects of land configuration variables,
indicates the strength of building shape-air temperature
relationship.
Of the land-cover components examined, increased

patch density and complexity of shape of the bare soil of
desert-scaping and vegetation, both are negatively corre-
lated with nighttime near-surface air temperatures. This
result, also reported for land surface temperature studies in
Phoenix (Myint et al., 2015; Li et al., 2017), follows from
the influence of air movement across different densities
and shapes of land cover units. A negative drop in
temperature with increased patches, and not uniform large
areas of soil, suggests that other land covers intervene to
promote cooling – this is a point made for buildings
(Connors et al., 2013). Interestingly, the shape of
impervious surfaces had the weakest association with
temperature, despite the well-known impacts of such
surfaces on land surface temperature (Myint et al., 2013),
perhaps reflecting the uniformity of roads, the principal
factor in this land class. As expected, however, sensible
heating from roads due to the lower albedo of asphalt
(primarily) and anthropogenic emissions from moving
vehicles, generates a significant positive correlation
between the percentage area covered by roads and near-
ground air temperature. Somewhat unexpected, no sig-
nificant effect associated with predictors of vegetation was
found during the day; this despite the considerable
evidence for the cooling impacts of vegetation on land
surface temperature (Myint et al., 2010; Chow et al., 2011;
Jenerette et al., 2011; Declet-Barreto et al., 2013).
Finally, in contrast with previous studies, such as Li

et al. (2017), none of the predictors related to land
composition were included in the final specifications, even
though the model building process prioritized them. It
should be emphasized, however, that the outcomes of this
work do not suggest that land composition is not causally
associated with temperatures. Although rich in terms of
their temporal dimension relative to Li et al. (2017), the
dataset analyzed here addresses a smaller number of sites.
As a result, the statistical models can only identify the most
prominent features of the association between land
architecture and near-ground air temperatures.
Overall, our results are consistent with our broad

hypothesis, generated from studies of land surface
temperature (Myint et al., 2015; Li et al., 2016, 2017)
that fine resolution, land-cover configuration has impor-
tant, if incompletely identified, impacts on daytime and
nighttime temperatures in the Phoenix metropolitan area.
Interestingly, however, this study did not identify some of
the more dominant attributes of land system architecture
found for land surface temperature, such as the pattern and
shape of vegetation cover. Rather, and surprisingly, metrics
of building (residential homes) shape proved to be
important in lowering temperatures during various parts
of the daytime and nighttime. The degree to which the
differences in the land architecture-temperature relation-
ships reported in this and the former studies resides in
temperature addressed, either land surface or near-ground,
has yet to be determined.

3.4 Limitations

Perhaps the most important limitation in this study is the
use of WeatherUnderground (WU) data from residences in

Fig. 6 (a) Coefficients of determination (R2) for site-specific regression models; Model 1 versus Model 2. (b) Site-specific slopes of the
linear trends in Model 2.
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Fig. 7 Pearson’s correlations of the parameters in site-specific models (2) with land system architecture metrics. Plots correspond to
different levels of spatial aggregation (a) 50 m; (b) 150 m; (c) 250 m; (d) 350 m; (e) 450 m; (f) 550 m. Darker tones represent stronger
linear associations; solid squares depict positive correlations. Correlations which are not significant at the 0.01 level are not displayed.
Land architecture metrics in each plot were selected using a backward stepwise procedure based on VIF. Land cover classes are designated
as follows. 1: Buildings, 2: Roads, 3: Soil, 4: Trees/Shrubs, 5: Grass and 11: Pools.
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Fig. 8 Observed versus predicted near surface temperatures: leave-one-site cross-validation based on LMMcomb.
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the Phoenix metropolitan area. WU provides standardized
weather monitoring stations that report observations
directly to the organization and made public. Geographical

coordinates provide the capacity to match the stations to
their parcels. The precise positioning of the station (e.g.,
height above the ground and shade conditions) is lacking,

Table 2 Estimated mixed-effects models LMM0, LMMgeog, LMMcomb, for air temperatures. Fixed effects coefficients are significant with p< 0.01.

Standard deviations of significant random effects are shown in parentheses, next to the corresponding fixed-effects coefficients. Land cover classes are

designated as follows. 1: Buildings, 2: Roads, 3: Soil, 4: Trees/Shrubs, 5: Grass

Variable LMM0 LMMgeog LMMcomb

Coefficient Std Error Coefficient Std Error Coefficient Std Error

12AM 28.956 (1.454) 0.234 28.956 (1.450) 0.233 28.959 (1.174) 0.185

3AM 25.275 (1.341) 0.223 25.276 (1.447) 0.223 25.279 (1.158) 0.183

6AM 22.563 (1.333) 0.241 22.564 (1.550) 0.241 22.566 (1.286) 0.201

9AM 28.898 (1.358) 0.23 28.898 (1.489) 0.23 28.901 (1.539) 0.238

12PM 35.506 (1.427) 0.204 35.507 (1.253) 0.202 35.510 (1.453) 0.226

3PM 38.928 (2.371) 0.332 38.929 (2.176) 0.332 38.931 (2.239) 0.342

6PM 39.005 (1.455) 0.191 39.006 (1.187) 0.191 39.008 (1.347) 0.21

9PM 34.101 (1.226) 0.171 34.101 (1.069) 0.17 34.103 (0.976) 0.157

Lin. Trend 2.733 0.043 2.733 0.043 2.733 0.043

Elevation – 0.496 0.085 – 0.223 0.089

FRAC1_350 – 0.485 0.088

ME/°C 0.015 0.007 – 0.007

MedAE/°C 1.583 1.555 1.554

RMSE/°C 2.301 2.268 2.256 　

Table 3 Estimated mixed-effects models LMM50, LMM150, LMM250, for air temperatures. Fixed effects coefficients are significant with p< 0.01.

Standard deviations of significant random effects are shown in parentheses, next to the corresponding fixed-effects coefficients. Land cover classes are

designated as follows. 1: Buildings, 2: Roads, 3: Soil, 4: Trees/Shrubs, 5: Grass

Variable LMM50 LMM150 LMM250

　 Coefficient Std Error Coefficient Std Error Coefficient Std Error

12AM 28.959 (1.311) 0.205 28.959 (1.259) 0.189 28.959 (1.201) 0.189

3AM 25.278 (1.297) 0.203 25.278 (1.243) 0.187 25.279 (1.189) 0.187

6AM 22.566 (1.411) 0.219 22.566 (1.359) 0.205 22.566 (1.315) 0.205

9AM 28.901 (1.450) 0.225 28.901 (1.531) 0.237 28.901 (1.533) 0.237

12PM 35.509 (1.366) 0.213 35.509 (1.398) 0.224 35.509 (1.441) 0.224

3PM 38.931 (2.248) 0.343 38.931 (2.203) 0.341 38.931 (2.235) 0.341

6PM 39.008 (1.241) 0.195 39.008 (1.278) 0.208 39.008 (1.329) 0.208

9PM 34.103 (0.981) 0.157 34.103 (0.973) 0.156 34.103 (0.968) 0.156

Lin. Trend 2.733 0.042 2.733 0.043 2.733 0.043

Elevation – 0.478 0.083 – 0.283 0.09 – 0.237 0.09

PD3_50 – 0.308 0.083

FRAC1_150 – 0.386 0.09

FRAC1_250 – 0.450 0.089

ME/°C – 0.009 – 0.008 – 0.007

MedAE/°C 1.561 1.553 1.554

RMSE/°C 2.263 　 2.258 　 2.256 　
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however, and this positioning can affect the temperatures
recorded. We could not control for station positions but
assume that the 44 stations were relatively equally
distributed among similar parcel positions.
In addition, we explore only one month, as opposed to a

full year. In doing so, we fully recognize that the
relationships revealed in this study may change by season
or by the addition of later summer months. One study that
considered seasonal land surface temperature in the
Phoenix area indicates the impacts of land-cover composi-
tion and, perhaps, configuration have varied summer to
winter (Myint et al., 2013), which may be related to
hysteresis effects between surface and air temperature
(Song et al., 2017). Elaboration of seasonal impacts of land
architecture on residential air temperature in the Phoenix
area awaits further study. Our attention to June was
fostered by the overwhelming concern in the Phoenix
metropolitan area of extreme summer heat, which becomes
common in June, and the various means to mitigate it,
including attention to land cover (City of Phoenix). To
standardize daily weather conditions as much as possible,
we eliminated the more volatile conditions of July and
August, triggered by monsoon precipitation and winds,
because their addition would likely yield much more
complex results.
Ninety percent of the NAIP data used to determine land-

cover characteristics correspond to a five-day period in
early June, 2010, whereas the temperature data were

collected in June, 2011. Two dates in August and
September 2010 correspond to 10% of the NAIP data.
Our assumption is that the vast majority of the land covers
present in 2010 were present in 2011 as well. In addition,
while our selected parcels were single family residential in
kind, in some cases the larger radii assessments may have
overlapped into non-residential parcels such as parking lots
or parks, affecting the calculations of land-cover composi-
tion and configuration. Finally, this study did not explore
metrics of land-cover pattern and shape other than
FRAGSTATS.
Our urban canopy level air temperature LMM error

measures of ME, MedAE, and RMSE may relate to many
of the above issues, but are close to error measures reported
by other urban climate researchers addressing Phoenix at
micro-scales, who use sophisticated numerical models
(Chow and Brazel, 2012; Middel et al., 2014). Error
measure values reported in many studies are derived
typically by comparing model predictions, with ground
level or above roof level weather station data. For the most
part, the weather locales used in most of these studies are
commonly sited over relatively uniform surface conditions
or source areas within close proximity of the stations. For
example, Grossman-Clarke et al. (2010) applied a physics-
based complex Weather Research and Forecasting Model
(WRF) in conjunction with the Noah Urban CanopyModel
(UCM) at a resolution of 2 km and Landsat data (30 m
pixels) categorized into 12 LULC types. This study

Table 4 Estimated mixed-effects models LMM350, LMM450, LMM550, for air temperatures. Fixed effects coefficients are significant with p< 0.01.

Standard deviations of significant random effects are shown in parentheses, next to the corresponding fixed-effects coefficients. Land cover classes are

designated as follows. 1: Buildings, 2: Roads, 3: Soil, 4: Trees/Shrubs, 5: Grass

Variable LMM350 LMM450 LMM550

　 Coefficient Std Error Coefficient Std Error Coefficient Std Error

12AM 28.959 (1.174) 0.185 28.959 (1.188) 0.187 28.959 (1.223) 0.192

3AM 25.279 (1.158) 0.183 25.278 (1.175) 0.185 25.278 (1.210) 0.19

6AM 22.566 (1.286) 0.201 22.566 (1.303) 0.204 22.566 (1.333) 0.208

9AM 28.901 (1.539) 0.238 28.901 (1.530) 0.237 28.900 (1.516) 0.235

12PM 35.510 (1.453) 0.226 35.509 (1.437) 0.223 35.509 (1.410) 0.219

3PM 38.931 (2.239) 0.342 38.931 (2.228) 0.34 38.931 (2.215) 0.338

6PM 39.008 (1.347) 0.21 39.008 (1.332) 0.208 39.008 (1.309) 0.205

9PM 34.103 (0.976) 0.157 34.103 (0.985) 0.158 34.103 (1.001) 0.16

Lin. Trend 2.733 0.043 2.733 0.043 2.734 0.043

Elevation – 0.223 0.089 – 0.235 0.089 – 0.266 0.089

FRAC1_350 – 0.485 0.088

FRAC1_450 – 0.467 0.089

FRAC1_550 – 0.418 0.089

ME/°C – 0.007 – 0.006 – 0.004

MedAE/°C 1.554 1.552 1.559

RMSE/°C 2.256 　 2.257 　 2.258 　
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conducted for Phoenix resulted in reported RMSE of
1°C–3°C for daytime and upwards of 5°C at night between
model air temperatures and weather site values. Georgescu
et al. (2011), averaging data across 8 urban and rural
ground sites yielded better agreement with similar
modeling approach (~0.6°C to 1.3°C). Research using
WRF UCM modeling techniques applied to Tokyo, Osaka
and Nagoya metropolitan areas by Kusaka et al. (2012)
yielded a reported RMSE of a similar magnitude to our
statistical approach (ca. 2.7°C). RMSE errors reported by
Loridan et al. (2013) range from 1.3°C to 1.6°C, however,
in that study temperature data from instrumented towers
are used at heights above the urban canopy level where
there would be less heterogeneity across space. Errors for
finer scale microclimate models may not be any different.
Chow and Brazel (2012) and Middel et al. (2014), for
example, used a high resolution version of the ENVI met
model in east valley residence locations of the Phoenix
metro area and compared output to onsite weather stations
with RMSE results ranging from 1.4°C–3.0°C.
The above-mentioned errors, especially in comparison

to urban canopy air temperatures, may significantly relate
to what is evaluated in the international urban energy
balance model comparison study of Grimmond et al.
(2011). Energy balance experiments tested 33 urban
climate models that showed higher errors occur in most
models for the turbulent and latent heat fluxes in urban
areas than other components of the urban energy balance.
These flux errors directly affect predictions of temperatures
and would tend to explain what appear to be high RMSEs
in estimating urban canopy air temperatures.

4 Concluding remarks

Incipient research on “urban-scapes” through the lens of
fine-resolution land system architecture approaches is
underway. It demonstrates that both the composition and
the configuration of land covers, foremost in terms of their
patterns, affect land surface temperature, especially for
desert cities, such as Phoenix, AZ (Zhou et al., 2011; Li
et al., 2012; Connors et al., 2013; Myint et al., 2015; Zhang
et al., 2017). Increasingly, configuration in terms of land-
cover shape has been shown to influence land surface
temperature as well (Maimaitiyiming et al., 2014; Huang
and Cadenasso, 2016; Li et al., 2016, 2017). That these
direct surface-temperature relationships uncovered at such
fine spatial resolution extend to near-ground temperatures
has been less explored.
This study advances this exploration by examining fine-

resolution land-cover configuration impacts on near-
ground air temperature for 44 residential neighborhoods
in the Phoenix, AZ, metroplex, for the month of June,
2011. It indicates that complex single-family (residence)
building shapes are associated with lower air temperatures
and the optimal level of spatial aggregation for identifying

this association is 350 m. The patch density of soil is
weakly and negatively associated with nighttime air
temperatures, but this relationship is identified only at
the finer level of spatial aggregation (50 m). The building
shape impact is surprising, as it has not emerged strongly in
the literature linked to land system architecture to date.
While preliminary in nature and in need of expansion to

larger datasets for further analysis, our study indicates that
this relationship requires further examination. Our results,
coupled with those from research on land surface
temperature, suggests that the configuration of land covers
of residential parcels in the Phoenix area affects tempera-
ture sufficiently that further exploration of fine-resolution,
land system architecture is warranted. They also point to
the design of land covers from the parcel level to the
metroplex at large, as a means to address extreme
temperatures and the dis-services associated with them in
desert cities.
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