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This study seeks to determine the role of land architecture—the composition and configuration of land cover—as
well as cadastral–demographic–economic factors on land surface temperature (LST) and the surface urban heat
island effect of Phoenix, Arizona. It employs 1 m National Agricultural Imagery Program data of land-cover with
120m Landsat-derived land surface temperature, decomposed to 30m, a newmeasure of configuration, the nor-
malizedmoment of inertia, andU.S. Census data to address the question for two randomly selected samples com-
prising 523 and 545 residential neighborhoods (census blocks) in the city. The results indicate that, contrary to
most other studies, land configuration has a stronger influence on LST than land composition. In addition, both
land configuration and architecture combined with cadastral, demographic, and economic variables, capture a
significant amount of explained variance in LST. The results indicate that attention to land architecture in the de-
velopment of or reshaping of neighborhoods may ameliorate the summer extremes in LST.
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1. Introduction

The urban heat island (UHI) effect refers to the higher air and surface
temperature in urban areas compared to that of the surrounding rural
hinterland, generated by high levels of near surface energy emission,
solar radiation absorption of ground objects, and often, low levels of
evapotranspiration in cities (Buyantuyev & Wu, 2010; Oke, 1982,
1997; Rizwan, Dennis, & Liu, 2008). The UHI of large cities has increased
substantially since themiddle of the 20th century (Akbari, Pomerantz, &
Taha, 2001; Oke, 1976; Stone, 2007), with urban conglomerations gen-
erating modeled and observed changes in regional temperatures
(Georgescu, Moustaoui, Mahalov, & Dudhia, 2011; He, Liu, Zhuang,
Zhang, & Liu, 2007; Kalnay & Cai, 2003; Li, Wang, Shen, & Song, 2004).
Extensively examined, the UHI draws increasing attention owing to its
effects on energy and water consumption, human health, environmen-
tal (ecosystem) services, especially in the context of global warming
(e.g. Gober, Kirkwood, Balling, Ellis, & Deitrick, 2009; Harlan, Brazel,
Prashad, Stefanov, & Larsen, 2006; Harlan, Declet-Barreto, Stefanov, &
Petitti, 2013; Hondula, Vanos, & Gosling, 2013; Hondula et al., 2012).
For these and other reasons, attention to the means to mitigate the
UHI effect have garnered considerable attention, especially through
model simulations (e.g. Golany, 1996; Sailor, 1995), but increasingly
through the use or remote sensing data that permit novel assessments
(e.g., Zhou, Huang, & Cadensasso, 2011).

Remote sensing technology has been a boon to the study of the UHI
in at least two fundamental ways: [1] direct observation of land surface
thermal radiance converted to land surface temperature to address the
Surface UHI (SUHI) (e.g. Lo, Qiattrochi, & Luvall, 1997; Streutker, 2002);
and [2] direct spatial linkages of ground features, both their vertical di-
mensions and patterns, to land surface temperature at fine spatial reso-
lutions (e.g. Arnfield, 2003; Buyantuyev & Wu, 2010; Chow, Chuang, &
Gober, 2012; Nichol, 1996; Unger, 2004). To date, this research has fo-
cused on the relationship between land surface temperature (LST) and
particular land-cover types (or land composition) (e.g. Chow & Brazel,
2012; Li, Song, Cao, Meng, & Wu, 2011; Middel, Häb, Brazel, Martin, &
Guhathakurta, 2014; Stone & Rodgers, 2001; Zheng, Myint, & Fan,
2014; Zhou et al., 2011), and between spatial thermal patterns and so-
cial economic factors (Buyantuyev & Wu, 2010; Harlan et al., 2006;
Hondula et al., 2013; Huang, Zhou, & Cadenasso, 2011; Jenerette,
Harlan, Stefanov, & Martin, 2011). Recently, however, attention to
land system architecture (Turner, Janetos, Verburg, & Murray,
2013)—the composition and configuration (e.g., size, shape, patterns,
and connectivity) of the urban land cover—on SUHI has been examined
in regard to possible UHI mitigation strategies (Chen, Zhao, Li, & Yin,
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2006; Connors, Galletti, & Chow, 2013; Li, Zhou, Quyang, & Zheng, 2012;
Li et al., 2013b; Zhou et al., 2011).

Briefly summarizing, this research informs us that increasing
greenspace, water, and skyview (open area ventilation) tend to amelio-
rate the UHI effect, while dark-colored impervious surfaces tend to am-
plify it, with larger impacts on nighttime temperatures (e.g. Chow &
Brazel, 2012; Li et al., 2011; Maimaitiyiming et al., 2014; Weng, Lu, &
Schubring, 2004; Xian & Crane, 2006; Zheng et al., 2014; Zhou, Qian,
Li, Li, & Han, 2014). These relationships tend to hold across different
urban areas and environments, but vary in magnitude diurnally and
seasonally. Specific linkages to human outcomes demonstrate that UHI
impacts tend to be registered most highly among those parts of city
that have dense occupation with low levels of shade, either from build-
ings or trees, and greenspaces. These conditions, at least in the U.S. cities
examined, tend to be related to lower levels of income, often linked to
neighborhoods dominated by certain ethnic groups (Buyantuyev &
Wu, 2010; Harlan et al., 2006; Hondula et al., 2012; Jenerette et al.,
2007, 2011). Finally, the land architecture of urban areas, from the par-
cel to larger levels of assessment, has been hypothesized to amplify or
ameliorate ecosystem services, such as those related to SUHI effects
(Turner et al., 2013). Nascent research suggests that, controlling for
land composition, edge and patch densities, landscape shape index,
and fractal dimensions (FRAGSTAT metrics) of land covers hold signifi-
cant consequences for land surface temperatures (Buyantuyev & Wu,
2010; Connors et al., 2013; Li et al., 2011; Li et al., 2012; Middel,
Brazel, Kaplan, & Myint, 2012; Middel et al., 2014; Stone & Rodgers,
2001; Zhang, Odeh, & Ramadan, 2013; Zhang, Zhong, Feng, & Wang,
2009; Zhou et al., 2011).

Our study follows from but extends these lines of research. It seeks
to determine if LST among residential neighborhoods during the sum-
mer season, specifically June, is related to the land architecture and cer-
tain cadastral, demographic, and socioeconomic characteristics of the
neighborhoods in the metropolitan area of Phoenix, AZ. We employ
fine resolution spatial data and a compactness pattern measure—the
normalized moment of inertia—applied for the first time in land archi-
tecture assessments. We test the following hypotheses drawn from or
implied in the body of research reviewed above:

[1] [1] The composition and configuration (i.e., land architecture) of
land-cover types affect summer daytime LST and thus the SUHI. Re-
search to date has yet to explicate adequately the configuration
dimensions of multiple land covers on SUHI.

[2] [2] Land composition is more strongly related to summer daytime
LST than configuration. Most of the research results to date, typi-
cally using FRAGSTATSmetrics, indicate the stronger role of com-
position, or area of land covers, on the SUHI.

[3] [3] Land architecture has more impact on summer daytime LST than
do cadastral–demographic–socioeconomic factors. Some research
implies that these factors and land architecture may be linked,
but assessing their relative roles has yet to be examined fully.
In our study, cadastral data provide information on parcel size,
which are used as ancillary data for the economic dimension in
question.

2. Study area, data, and methods

2.1. Study area

The City of Phoenix, AZ, is the center of an expansive metropolitan
area located on the northern edge of the Sonoran Desert (Fig. 1). June
maximum daily temperatures average 40 °C, with the highest recorded
temperature reaching 48.3 °C (Middel et al., 2012). Temperatures are
amplified by the UHI effect, especially in regard to an enlarged mini-
mum night time temperature (Chow et al., 2012; Hawkins, Brazel,
Stefanov, Bigler, & Saffell, 2004; Stabler, Martin, & Brazel, 2005). This
effect has been triggered by the massive growth in the metropolis.
Since the middle of the 20th century, there have been major increases
in the area of impervious surface and numbers of residential parcels
and neighborhoods with different levels of vegetation and bare soil
(including rock and desert surfaces). Residential landscape
composition—variations of turf lawns to xeric- and desert-scapes—are
associated with the period of development, rules of Home Owner Asso-
ciations (HOAs), and income levels, among other factors (Chow &
Brazel, 2012; Kane, Connors, & Galletti, 2014; Larson, White, Gober,
Harlan, & Wutich, 2009b; Sha & Tian, 2010; Shrestha, York, Boone, &
Zhang, 2012; Turner & Ibes, 2011). For the most part, the presence of
vegetation and open greenspaces beyond residential parcels
(e.g., parks and golf courses) varies across the city, with lower levels
of both apparently related to lower income andHispanic neighborhoods
in Phoenix proper (Harlan et al., 2006; Jenerette et al., 2011).

2.2. Data and methods

2.2.1. Parcel and neighborhood selection
This study draws on residential census blocks (Fig. 1), our surrogate

for neighborhoods, composed primarily, but not exclusively, of single
family residential parcels and for which cadastral data provide land-
use information for each parcel. Two random samples (A and B) were
employed in order to verify the results of the exercise, and each sample
was drawn by the same method (Fig. 1). The Create Random Points
function in the GIS software ArcMap selected 1000 single family resi-
dential parcels (0.2% of such parcels in the city) for both samples. To en-
sure spatial independence, both samples were reduced by applying a
distance filter in which each parcel had to be at least 1000 m from the
others. The census block (neighborhood) for each parcel was identified,
and another distance filter was applied: each census block had to be at
least 500 m from one another. This sampling and filtering procedure
yielded 21,505 and 24,167 single family parcels that are distributed
over 523 and 545 census blocks, respectively, across the city. The parcel
and census block selection outcomes are provided in Table 1 and the
distributions of the A and B sample census blocks are mapped in Fig. 1.

At least two issues are noteworthy in our sample. First, parts of the
metropolitan area with the highest SUHI were excluded from consider-
ation because they are predominately nonresidential in composition.
Nevertheless, the sample included neighborhoods within the higher
SUHI zones adjacent to the central commercial district and to native-
vegetation parklands, both of which tend to have high LST (Fig. 2). Sec-
ond, census block data were employed because of our focus on the land
architecture–LST relationship, which is more accurately captured at the
fine-spatial grain of the census block rather than at the more coarse-
spatial grain of the census block group. In a few cases, our sampled cen-
sus blocks had 10 or fewer households, and household incomedata pro-
vided by the census are derived at the census block group level and
applied to block level for our entire sample. These two issues may affect
our results.

2.2.2. Land-cover classification
To examine the heterogeneous land architecture of neighborhoods

requires detailed land-cover data. These data were derived through
the image classification of the National Agricultural Imagery Program
(NAIP) data, 1 m orthorized aerial photography taken from June 8–10,
2010. The NAIP dataset includes four spectral bands (red, green, blue,
and near infrared band) with their radiances converted to a Digital
Number ranging from0–255,mosaicked at the county scale. The dataset
was cookie-cut to the extent of the Central Arizona-Phoenix Long-term
Ecological Research program (www.caplter.asu.edu), which covers
most of the metro-Phoenix area, and preprocessed with pixel-based
spectral transformations, which included red, green, and blue to intensi-
ty, hue, and saturation, principal components analysis, and Normalized
Difference Vegetation Index (NDVI). An Object-Based Image Analysis
(OBIA) was utilized to produce the land-cover classification (Li et al.,

http://www.caplter.asu.edu


Fig. 1. The study area, random sample A and B census blocks, and NAIP-based land cover. The points indicate the selected census blocks, and the polygon is the boundary of the city of
Phoenix. The background image is the NAIP data with near-infrared band, red band, and green band displayed on the red, green, and blue channel respectively.
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2014b). This approachwas built on a hierarchical image object network,
with image segmentation algorithms (multi-resolution segmentation,
multi-threshold segmentation, chessboard segmentation, and Quadtree
segmentation) to divide the image into different levels of image objects.
Image objects that belong to specific land-cover types maintain unique
characteristics in terms of spectral, spatial, contextual, and geometric in-
formation. In addition, cadastral data in a GIS vector layer were used to
Table 1
Description of the random sample selection for sample A and sample B.

Sample
A

Sample
B

1 Number of initial randomly selected parcels 1000 1000
2 Number of parcels reduced by distance filter (1000 m) 723 787
3 Number of census blocks with parcels in #2 with distance

filter (500 m)
523 545

4 Percent of selected census blocks for Phoenix 55% 57%
5 Number of parcels in selected census blocks 27,470 27,528
6 Number of residential parcels in selected census blocks 26,614 26,326
7 Percent of residential parcels in selected census blocks 97% 96%
8 Number of single family residential parcels (subset of #6) 21,505 24,167
9 Percent of single family residential parcels of total

residential parcels (#6)
81% 92%

10 Number of multi-family residential parcels (subset of #6) 5109 2159
11 Percent of multi-family residential parcels of total

residential parcels (#6)
19% 8%

12 Percent of residential parcels in selected census blocks 97% 96%
13 Number of non-residential parcels in selected census

blocks
856 1202

14 Percent of non-residential parcels in selected census blocks 3% 4%
regulate the boundary of each parcel. Expert knowledge decision rules
were created based on those characteristics to delineate the land-
cover types. All parcels and adjacent streets were analyzed for the se-
lected neighborhoods. The land-cover mapping includes 12 classes
with a 91.86% overall accuracy (Li et al., 2014b). Five classes (building,
impervious surfaces, open soil, vegetation, and swimming pool) domi-
nated our neighborhoods and were used in this analysis. The category
“impervious surfaces” refers to roads, parking lots, and related features,
but not to buildings.

2.2.3. Land surface temperature
Landsat Thematic Mapper was used to derive LST: cloud free TM sen-

sor (row=37, path=37) taken about 10AM, on June 10, 2010. This date
matched the three-daywindow inwhich the NAIP data (above)were de-
rived. In addition, weather station data for that window (June 8–10), re-
vealed highly similar temperatures and conditions, clear and calm, typical
mid-morningweather for Phoenix in early June. The Landsat Band 6 ther-
mal data (120m)were re-projected to theUniversal TransverseMercator
projection system Zone 12 N and converted to 30 m.

To estimate the LST from the Landsat TM thermal infrared banddata,
the Digital Numbers of sensors were converted to meaningful radiance
using a spectral radiance scaling method (Eq. 1) (Chander &
Groeneveld, 2009):

Lλ ¼ LMAXλ−LMINλ

Qcalmax−Qcalmin
� Qcal−Qcalminð Þ þ LMINλ ð1Þ

where the Lλ is the cell value as radiance (W/(m2 sr μm)), Qcal is the
quantized calibrated digital number, Qcalmin is the minimum quantized



Fig. 2. Derived land surface temperatures for the city of Phoenix using Landsat TM and selected census blocks in samples A and B. The points represent the selected census blocks.
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calibrated pixel value, and Qcalmax is the maximum quantized calibrated
pixel value; LMINλ is the spectral radiance scales to Qcalmin, LMAXλ is the
spectral radiance scales to Qcalmax.

Spectral radiance was converted to brightness temperature by as-
suming the earth's surface is a black body (Eq. 2) (Chander, Markham,
& Helder, 2009; Coll, Galve, Sánchez, & Caselles, 2010):

Tb ¼ K2

ln
K1

Lλ
þ 1

� � ð2Þ

where Tb is the brightness temperature in Kelvin, Lλ is the cell value as
radiance, K1 (607.76 W / (m2 sr μm)) and K2 (1260.56 K) are the con-
stants of Landsat TM calibration.

The brightness temperature was converted to kinetic temperature,
or land surface temperature (Eq. 3) (Artis & Carnahan, 1982; Dakin,
Pratt, Bibby, & Ross, 1985):

Ts ¼ Tb

1þ λ� Tb

ρ

� �
lnε

ð3Þ

where λ (11.5 μm) is the emitted radiance wavelength (Markham &
Barker, 1985), the coefficient ρ (0.01438 mK) is generated from the eq-
uitation ρ=hc/b, in which h (6.626 × 10−34 Js) is the Planck's constant,
c (2.998× 108m/s) is the velocity of light, and b (1.38× 10−23 J/K) is the
Boltzmann constant, and ε is the surface emissivity.

The estimation of land surface emissivity is one of the essential pa-
rameters to retrieve LST. Several methods can be used to calculate
land surface emissivity (Gillespie, Matsunaga, & Rokugawa, 1998;
Snyder, Wan, Zhang, & Feng, 1998). Our study utilized the simplified
Normalized Difference Vegetation Index (NDVI) thresholds method
(NDVITHM) to obtain the values from Landsat imagery (Sobrino,
Jimenez-Munoz, & Paolini, 2004; Sobrino et al., 2008). NDVI is calculat-
ed from the Landsat imagery with the following equation (Eq. 4):

NDVI ¼ Band 4–Band3
Band 4þ Band3

: ð4Þ

Different approaches have been utilized to calculate the LST from the
NDVI value. Like most urban areas, Phoenix is composed of heteroge-
neous and fragmented landscapes, requiring methods that account for
emissivity in these conditions (e.g., Liu & Zhang, 2011). We adopted
that of Sobrino et al. (2008) (Eq. 5):

ε ¼ εvPv þ εs 1−Pvð Þ þ dε: ð5Þ

Eq. 5 is the simplified version of the land surface emissivity calcula-
tion, where εv is the vegetation emissivity and εs is the emissivity for
urban soil surface; Pv is the proportion of vegetation derived from an
NDVI based empirical model (Eq. 7) by Carlson and Ripley (1997) and
Sobrino et al. (2004, 2008); dε is the error in the model shown in
Eq. 5, including the land surface geometrical distribution effect and in-
ternal reflections (Sobrino et al., 2004; Sobrino et al., 2008). The estima-
tion of dε is given by (Eq. 6):

dε ¼ 1−εsð Þ 1−Pvð ÞFεv ð6Þ

where F (0.55) is a shape factor (Sobrino, Caselles, & Becker, 1990;
Sobrino et al., 2004). In order to obtain more accurate and consistence
values of Pv, we assign it 0.99 when NDVI N NDVIv and 0 when
NDVI b NDVIs (where v and s refer to vegetation and soil). The NDVITHM
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methods described here estimate the surface emissivity for bare soil
pixels (NDVI b NDVIs) using the reflectivity value of red band ρred
(Landsat TM band 3), and the equations are expressed as (Eqs. 7 & 8):

ε ¼
aþ b ρred when NDVIbNDVIs

εvPv þ εs 1−Pvð Þ þ dε when NDVIs≤NDVI≤NDVIv
εv þ dε when NDVINNDVIv

8<
: ð7Þ

Pv ¼ NDVI−NDVImin

NDVImax−NDVImin

� �2
: ð8Þ

Adapting the approximation of vegetation and urban soil surface
emissivity values from Sobrino et al. (2008), land surface emissivity is
expressed as (Eq. 9):

ε ¼
0:979−0:035 ρred when NDVIb0:2

0:986þ 0:004 Pv when 0:2≤NDVI≤0:5
0:99 when NDVIN0:5:

8<
: ð9Þ

The derived LST (Fig. 2) describes the surface thermal condition for
the city of Phoenix. Pixel values range from 29.9 °C to 40.6 °C, and the
mean LST is 33.5 °C. Only a 0.10 C difference in LST separates the mean
temperature for Sample A = 33.4 and Sample B = 33.5. Finally, the
LSTs reported for each census block includes all parcels and streets
within that block.

It is noteworthy that retrieving representative in-situmeasurements
to validate LST data from satellite images in heterogeneous environ-
ments is challenging. LST varies significantly over space and time,
even at sub-grid resolution (Li et al., 2013). Vanos et al. (in press)
found surface temperature differences of up to 30 °C between shaded
and non-shaded surfaces on a playground in Phoenix at the touch
scale (1 cm). These differences were not captured by an infrared
MASTER super spectral image (6.8 m resolution) available to them.
Due to a lack of high-resolution data, we can only qualitatively assess
the accuracy of the LST product derived from Landsat TM.

The overall accuracy of LST from satellite-based thermal infrared
(TIR) data depends on atmospheric and emissivity corrections.
Jiménez-Muñoz and Sobrino (2006) assessed errors associated with
LST estimation fromTIR data and found that atmospheric effects typical-
ly lead to an error of 0.2 K to 0.7 K. Uncertainties in emissivity retrieval
result in an error of 0.2 K to 0.4 K. The totalminimumerror to be expect-
ed without in-situ measurements is 0.8 K. Various other studies are in
line with this accuracy assessment. Yu, Guo, and Wu (2014) retrieved
LST from Landsat 8 TIRS and found that a radiative transfer equation-
based method produced results with RMSE b1.0 K. Rozenstein, Qin,
Derimian, and Karnieli (2014) used a split window algorithm to esti-
mate LST from Landsat 8 at RMSE = 0.93 K. We expect the accuracy of
our LST calculation to be comparable to those results.

2.2.4. Land-architecture data
Neighborhood-scale (entire census block) land architecture mea-

sures were derived from the land-cover (2.2.3) and census block data.
Measures include the area and compactness pattern index of each
land-cover type, and the same index of the census block (Table 2). The
area of each land-cover type (area_class#)was determined by the num-
ber of pixels of each type within the census block unit. The spatial pat-
tern indicator of the land-cover types was calculated using a new
compactness pattern measure, the Normalized Moment of Inertia
(NMI) (Li et al., 2013a). As described below, NMI has been demonstrat-
ed to be more effective and accurate than other measures of the com-
pactness of a patch (land-cover unit) and the concentration of patches
(Miller, 1953; Schwartzberg, 1965; McGarigal & Marks, 1995; Li et al.,
2014a). Compactness measures the extent to which the shape is spread
out from its center; a circle constitutes the most compact shape. Con-
centration measures the compactness of multiple patches, a product of
the distances among patches and the compactness/moment of each sin-
gle patch.

The NMImeasure draws on the secondmoment of inertia (aka, area
moment of inertia) to measure the degree to which all elements on a
natural planar shape i are concentrated. Mathematically, the second
moment of a shape Ii

Gi about an axis perpendicular to it and passing
through its centroid Gi can be computed from:

IGi
i ¼

Z
d2dai ð10Þ

where
dai is the infinitely small area on the shape i, d is the distance from dai to
Gi. The normalized value NMI, can then be derived by comparing Ii

Gi to
the second moment of a circle I0 which has the same area of the shape:

NMI ¼ I0
IGi
i

: ð11Þ

Given that the area moment of a circle with area A is known as A2

2π,
NMI can then be represented as:

NMI ¼ A2

2πIGi
i

: ð12Þ

TheNMI has a range of 0, 1,with 0 representing an infinitely elongat-
ed shape, and 1 representing the most compact shape, a circle.

Several prominent features of NMI make it suitable for identifying
the spatial configuration pattern of land architecture. First, NMI is
scale-independent: patches with the same shape but different size will
be given the same value, providing a more consistent view of the land
configuration than a PARA (perimeter-area ratio) approach, as in
FRAGSTATS (McGarigal, Cushman, & Ene, 2012). Second, different
from other FRAGSTATS shape indices, such as the fractal dimension
index, the linearity index, and the related circumscribing circle index,
which focusmore onmeasuring the edge complexity by considering pe-
rimeter as an important factor, the NMI pays more attention to the
shape itself rather than the roughness of the edge boundary. Moreover,
the NMI is not only capable of measuring shape compactness of a single
object, but it can alsoquantify the overall compactness pattern for target
objects as a whole. Therefore, it has the ability to evaluate accurately
how patches/sub-patches are concentrated or dispersed within an
area. This is an important consideration for neighborhood study, in
which the basic area, a neighborhood, always contains more than one
object of a given land type (e.g., buildings) dispersed at different loca-
tions within the neighborhood.

Fig. 3 demonstrates the computation of NMI for multi-objects. Sup-
posing there are three objects within the study area, each has area mo-
ment I1 , I2, and I3, and areas of A1 ,A2, and A3, the area moment Ientire of
the three objects composited together can be represented as:

Ientire ¼
Xn
i¼1

Ii þ
Xn
i¼1

Aid
2
i ð13Þ

where n=3 in this case, di is the distance from shape i’s centroid to the
centroid (X,Y) of the new object. If (xi ,yi) is the coordinates of the cen-
troid for shape i, then (X ,Y) can be computed as:

X ¼
Xn

i¼1
Aixi

n
; Y ¼

Xn

i¼1
Aiyi

n
: ð14Þ



Table 2
Land architecture metrics and their descriptive statistics. Sample A and B on top and bottom of each row-column numeric entry, respectively.

Factor abbreviation Factor description Range Mean Std. deviation Std. error mean

Land architecture
Land composition
area1 Area building cover (m2) 458.42–16,752.41 1245.84 887.00 38.78

319.43–13,859.25 902.00 660.52 28.19
area2 Area impervious surfaces(m2) 361.18–29,100.47 4935.30 4855.49 212.31

480.67–22,051.06 3090.00 2965.75 126.57
area3 Area soil cover (m2) 119.17–53,963.01 7715.21 7298.62 319.14

940.31–21,272.91 5215.50 4157.45 177.43
area4 Area vegetation cover (m2) 138.38–25,034.44 3760.95 3938.98 172.24

171.30–26,995.83 2695.50 3483.21 148.66
area5 Area swimming pool cover (m2) 0.00–224.79 125.66 38.50 1.68

0.00–274.32 92.37 72.47 4.26

Land configuration
nmi1 Compactness pattern index building cover 0.01–0.84 0.17 0.00 0.00

0.02–0.42 0.17 0.07 0.00
nmi2 Compactness pattern index road 0.01–0.54 0.13 0.09 0.00

0.01–0.53 0.11 0.06 0.00
nmi3 Compactness pattern index soil cover 0.02–0.90 0.26 0.13 0.01

0.03–0.73 0.27 0.12 0.00
nmi4 Compactness pattern index vegetation cover 0.01–0.66 0.13 0.10 0.00

0.01–0.59 0.13 0.09 0.00
nmi5 Compactness pattern index swimming pool cover 0.00–0.85 0.02 0.08 0.00

0.00–0.98 0.11 0.27 0.01
nmi_block Compactness pattern index census block 0.02–1.00 0.66 0.19 0.01

0.01–0.09 0.71 0.20 0.01

Cadastral–demographic–economic variables (CDE)
Households Total number of households per census block 182–1378 569.27 171.56 7.50

220–1378 568.84 190.52 8.13
median_hh Median of household income in $ of census blocks 17,500–148,958 64,086.84 28,492.56 1245.89

22,393–170,179 65,229.23 30,681.10 1309.44
pop_den Total population density (per m2)of census blocks 0.01–0.42 0.23 0.16 0.00

0.01–0.41 0.13 0.05 0.00
hispnic_den Hispanic population (of any race) density (per m2) of census blocks 0.00–0.87 0.28 0.12 0.00

0.00–0.37 0.31 0.02 0.00
white_den White population density (per m2) of census blocks 0.00–0.66 0.11 0.08 0.00

0.00–0.39 0.12 0.08 0.00
afam_den African American population density (per m2) of census blocks 0.00–0.02 0.01 0.02 0.00

0.00–0.22 0.01 0.01 0.00
amind_den American Indian population density (per m2) of census blocks 0.00–0.02 0.00 0.01 0.00

0.00–0.01 0.00 0.01 0.00
asian_den Asian population density (per m2) of census blocks 0.00–0.11 0.01 0.01 0.00

0.00–0.14 0.01 0.01 0.00
total_area_block Total area (m2) of census blocks 688–19,865 6692.27 4782.32 209.34

918–23,315 4483.24 3474.23 148.02
total_edge_length Total edge length (m) of census blocks 172.76–5535.11 1339.26 837.11 36.60

100.58–8394.19 501.74 658.98 24.29
ave_area Average area (m2) of parcels of census blocks 758–5369 1911.38 747.90 32.70

439–6750 1057.19 863.87 36.87
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According to Eq.11, the NMI of the composited object can then
become:

NMI ¼ I0 entire

Ientire
¼

Xn

i¼1
Ai

� �2

2π
Xn

i¼1
Ii þ

Xn

i¼1
Aid

2
i

� � : ð15Þ

Benefitting from this additive nature, the compactness index of a
composited object can be easily obtained. In a land-use classification
map, the pixels with the same type/value will be collectively summed
up (non-linearly) to compute the overall compactness.With this indica-
tor, both the shape of a single object and the concentration of multiple
objects in a neighborhood can be detected. Using the above approach,
we calculated the area moment and the compactness pattern value for
each land-use type (e.g., building, soil) and the compactness of the
neighborhood boundary itself with the objective to study how well
the composition of these objects impacts the local surface temperature.
2.2.5. Cadastral–demographic–economic data
Cadastral–demographic–economic (CDE) variables were collected

or calculated from the City of Phoenix cadastral data, the 2010 U.S. Cen-
sus, and our land-cover classification. These variables included the fol-
lowing for each census block: the median household income, number
of parcels and average parcel sizes, population density (total popula-
tion/area), population densities of residents by ethnicity (i.e., Hispanic
of any race and non-Hispanic White, African-American, American
Indian-Alaskan Native, Asian, Native Hawaiian and other Pacific Is-
landers, and others), the total area of each neighborhood/census
block, and the total edge length of the census block (Table 2).

2.3. Statistical analysis

We joined all data spatially, including land architecture measures,
CDE variables, and the aggregated LST (average per census block) de-
rived from the Landsat imagewith the point shape file of the spatial dis-
tribution of the sampled census blocks. Multiple ordinary least squares
regressions (OLS) were used to determine the effects of land



Fig. 3.An example of multi-patch object and parameters (d= distance and l=moment of inertia) used to compute compactness of multiple patches in one neighborhood (see text). The
images show two neighborhoods with approximately the same area of vegetation but contrasting NMI values: the image on the left has a low NMI value (0.21) for vegetation and the
image on the right has a high NMI value (0.61) for vegetation.
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architecture and demographic-economic variables (independent vari-
ables) on the LST (dependent variable). In order to process a valid OLS
and avoid type I errors that happen when the error terms of the OLS
are not independent (De Knegt et al., 2010; Li et al., 2012; Lichstein,
Simons, Shriner, & Franzreb, 2002), we further tested each variable for
spatial auto-correlation using global Moran's I. Each variable has a
Moran's I ≤ 0.1, and is not significant at the 0.1 level, indicating the
weak spatial autocorrelation within the independent variables and
thus, greater confidence in the validity of OLS parameter estimates.
Table 2 presents descriptive statistics on the independent variables
used in the regression models.

Initially joined in the regression, the following variables were re-
moved because they were not statistically significant with LST or were
collinear with other variables in the models listed in Table 3: NMI per
census block, average parcel size, total edge of houses, total edge length
of census block, and shape index of the residential neighborhood, total
area of the neighborhoods/census block, compactness pattern index
Table 3
Correlation coefficients of seven models for samples A and B (p b 0.01).

Model Sample
A R2

Sample A
adjust R2

Sample
B R2

Sample B
adjust R2

1 Land composition 0.15 0.14 0.17 0.16
2 Land configuration 0.52 0.51 0.54 0.54
3 Cadastral–demographic–economic

variables (CDE)
0.21 0.21 0.15 0.15

4 Composition + configuration 0.54 0.54 0.57 0.56
5 Composition + CDE 0.31 0.31 0.27 0.27
6 Configuration + CDE 0.64 0.63 0.63 0.63
7 Composition + configuration +

CDE
0.65 0.64 0.64 0.64
(NMI) of the census block, total number of households in the census
block, and American Indian, Asian, African American, Hispanic and
White population density.

We explored the hypotheses through four scenarios involving seven
models (all the initial independent variables in each model are listed in
Table 2): (1) LST — land composition model; (2) LST — land configura-
tion model; (3) LST — CDE factors model; (4) LST — land
composition + land configuration; (5) LST — land composition + CDE
factors model; (6) LST — land configuration model + CDE factors
model; and (7) LST — land architecture (composition and
configuration) + CDE factors model. We conducted the forward step-
wise selectionwith the least Akaike information criterionwith a correc-
tion and significance level atα=0.01 to create the OLSmodels for each
scenario. The selection of the explanatory variables also involved the ex-
amination of the variance inflation factor, a factor to test the
multicollinearity among the explanatory variables. All the models
have variance inflation factor values less than two for the explanatory
variables. Finally, an incremental R2 test was employed to determine
the explained variance gained by adding variables to the base OLS
models.

3. Results

The seven OLSmodels are statistically significant (p b 0.001) as are 19
of the 24 added variables in the incremental R2 test (Tables 3 & 4). The
correlation results by model are very close for both samples in the OLS
and incremental R2 test. Significantly, land configuration as a lone variable
or with CDE variables provides stronger associations with mean neigh-
borhood LST than does land composition in both samples of the OLS
models. This observation is further supported by the extremely small
(0.01) improvement of Model 7 (composition + configuration + CDE)



Table 4
Incremental R2 test: the added R2 value to the base models of the models with additional independent variables.

Models with addition of independent variables

Composition +
configuration

Composition + CDE Configuration + CDE Composition +
configuration + CDE

Sample A Sample B Sample A Sample B Sample A Sample B Sample A Sample B

Base models Land composition 0.269a 0.269a 0.012 0.202a 0.521a 0.445a

Land configuration 0.015 0.029a 0.257a 0.185a 0.261a 0.203a

Cadastral–demographic–economic factors (CDE) 0.127a 0.093a 0.388a 0.316a 0.635a 0.334a

Composition + configuration 0.232a 0.162a

Composition + CDE 0.514a 0.242a

Configuration + CDE 0.004 0.018a

a Denotes increments significant at α = 0.001 level (F test).
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overModel 6 (configuration+CDE) (Table 3). It is additionally supported
by the small correlation increments that land configuration gains by
adding other variables and the much larger increments gained by those
variables when added to land configuration (Table 4). Equally significant,
strong correlations, R2= 0.54 to 0.65, were generated for various combi-
nations of land architecture and CDE variables (Table 3).

The significant variables in all models for both samples display the
same impact (positive or negative) on LST (Table 5). Similar to the re-
sults of Jenerette et al. (2007, 2011), vegetation and swimming pools
decrease LST, whereas buildings, soil, and impervious surfaces increase
it. Importantly to our case, increases in the compactness and concentra-
tion of bare soil increase LST, while those characteristics for vegetation
Table 5
Impact of independent and/or joint land architecture and cadastral–demographic–economic fa

Sample A Sample B

Model Variables Coefficient Std. coefficient Variables

1 area3 0.0079 0.3099 area3
area4 −0.0036 −0.5381 area4

area5
2 NMI1 129.2561 0.2402 NMI1

NMI3 45.4130 0.1428 NMI3
NMI4 −270.3970 −0.6606 NMI4

NMI5
3 total_den 13,780.3044 0.4592 median_hh
4 area5 −0.0027 −0.1724 area1

NMI1 112.5680 0.2092 area2
NMI3 48.6427 0.1530 area5
NMI4 −258.5293 −0.6316 NMI1

NMI3
NMI4
NMI5

5 area3 0.0010 0.3947 area3
area4 −0.0030 −0.4460 area4
total_den 13,189.1067 0.4396 area5

median_hh
6 NMI1 99.4659 0.1849 NMI1

NMI3 64.1074 0.2016 NMI3
NMI4 −252.1356 −0.6160 NMI4
median_hh −0.0004 −0.3601 median_hh

7 area5 −0.0002 −0.0982 area5
NMI1 91.7325 0.1705 NMI1
NMI3 64.8338 0.2039 NMI3
NMI4 −246.4618 −0.6022 NMI4
median_hh −0.0004 −0.3387 median_hh

The following independent variables were removed owing to
multicollinearity:
•Total area of the census block
•Compactness pattern index (NMI) of the census block
•Total edge length of the census block
•Asian population density
•American Indian population density
•African American population density
•Hispanic population density
•Total population density of the census block
•Total number of households in the neighborhood

All independent variab
neighborhood (census
Area and NMI #s refer
1: building
2: impervious surfaces
3: soil
4: vegetation
5: swimming pool
decrease it. In addition, a positive association exists between population
density and LST,whereas an inverse relationship exists betweenmedian
household income (Census data designation) of neighborhoods and LST.

4. Discussions

Although the relationships between LST and vegetation and CDE fac-
tors have been studied previously (Hanamean et al., 2003; Saunders,
Chen, Crow, & Brosofske, 1998, Smith and Smith & Johnson, 2004;
Jenerette et al., 2007; Martin, 2008; Jenerette et al., 2011; Myint,
Wentz, Brazel, & Quattrochi, 2013), examination of the kind undertaken
in this study has been restricted owing to the paucity of use of high-
ctors on LST. Descriptions of the independent variables can be found in Table 2.

Coefficient Std. coefficient

0.0026 0.4307
−0.0018 −0.5462
−0.0001 −0.1478
75.0498 0.1543
48.3265 0.1741
−248.4714 −0.6778
16.4240 0.1122
−0.0004 −0.3826
−0.0032 −0.2235
0.0021 0.1732
−0.0010 −0.1211
66.5219 0.1368
48.4170 0.1744
−246.3083 −0.6719
15.1407 0.1034
0.0025 0.4155
−0.0016 −0.4860
−0.0010 −0.1261
−0.0004 −0.3342
59.2853 0.1219
59.6380 0.2148
−236.7961 −0.6460
−0.0004 −0.3323
−0.0009 −0.1058
52.6507 0.1082
59.3241 0.2137
−233.5761 −0.6372
−0.0004 −0.3244

les in this table are significant at α= 0.001 level. The dependent variable is the mean
block) LST. The R2 of each model is in Table 3.
to
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resolution land-cover data and effective shape/configuration measures
of individual land covers (but see Zheng et al., 2014). Our results pro-
vide insights into testable hypotheses about land architecture, point to
characteristics of that architecture thatmay serve to reduce the SUHI ef-
fect during the summer day, and offer insights to studies of neighbor-
hood inequalities with respect to SUHI intensity.

4.1. The implications of land architecture on LST

Hypothesis 1. that land architecture affects summer daytime LST, is sup-
ported. Land composition and configuration (or land architecture;
Model 4, Table 3) of the sample neighborhoods in Phoenix considerably
exceeded CDE variables (Model 3, Table 3) in terms of impacts on LST.
The role of configuration is elaborated below (4.2). Here we focus on
composition.

Table 5 lists the role of the independent variables on daytime LST at
the neighborhood level. Consistent results across the models include:
increasing area of vegetation and swimming pools lowers LST, owing
to evapotranspiration, whereas increasing area of bare soils has the op-
posite effect, owing to rapid reradiation of solar energy, especially in this
hot, arid environment (Table 5). These results are consistent with those
found elsewhere (Martin, 2008, Akbari 2009, Li et al., 2011; Weng & Fu,
2014) and in recent studies of the Phoenix area (Jenerette et al., 2007;
Jenerette et al., 2011; Jenerette et al., 2015;Myint et al., 2013). Buildings
also reradiate heat, but the area of them proved significant only in Sam-
ple B of Model 4, surprisingly with a negative LST relationship. Further
research is required to determine why the two samples differed and
the cause of the negative relationship, the latter perhaps influenced by
differences in the albedo of the predominant roof-tops in different
neighborhoods. Surprisingly, the area of impervious surfaces is signifi-
cant only in the same sample and model as building, but increases LST
as expected. The absence of this variable in our other models requires
further investigation, given its prominence in other studies
(e.g., Zheng et al., 2014).

Hypothesis 2. that land composition affects summer daytime LST more
strongly than land configuration, is not supported. This hypothesis is im-
plied in the various works that have found a strong and significant rela-
tionship between the area or area fraction of specific types of land
covers and LST. It is directly supported by at least one study that consid-
ered both land composition and configuration in the Baltimore area
(Zhou et al., 2011). In our models, however, land configuration has a
much stronger correlation with LST than does land composition as
noted above (Tables 3 & 4), although its positive or negative impact on
LST depends on the land-cover classes in question (Table 5). This distinc-
tion between configuration and composition remains when CDE factors
are added (Models 5 & 6; Table 3). It is noteworthy that our measure of
compactness and concentration (NMI) of building, soil, and vegetation
appear in all models, complete with the expected LST relationships
(building and soil increasing LST and vegetation cooling). The uniformity
in compactness and concentration of swimming pools likely explains the
omission of this land-cover class. As noted for composition, the absence of
impervious surfaces in the results requires investigation, perhaps
reflecting the uniformity among road networks in residential neighbor-
hoods. Finally, consistent with work by Zhou et al. (2011), joining land
composition and configuration (land architecture) improves the correla-
tion with LST, but only marginally (Model 4, Table 3).

4.2. The influence of cadastral–demographic–economic factors (CDE)

Hypothesis 3. that land architecture has a stronger relation to summer
daytime LST than do CDE factors, is supported. Land cover is the proximate
source of LST, and similar architectures should produce similar LSTs, all
else held constant. In contrast, CDE variables are more distal to LST be-
cause the characteristics of households and neighborhoods are associat-
ed with land covers (and land uses) and operate only indirectly on LST
through land cover (Jenerette et al., 2007). For these reasons, land archi-
tecture is expected to be more strongly associated with LST. Similar ar-
chitectures, however, may be related to economicwealth and the ability
to pay for the installation and maintenance of landscaping (e.g., Harlan
et al., 2009) as well as to perceptions of desirable yard-scapes, age of
neighborhood, rules of HOAs, or other such factors (e.g., Larson,
Casagrande, Harlan, & Yabiku, 2009a). In our models, CDE variables ac-
count for amuch smaller amount of the explained variance (Model 3) in
LST than does land architecture (Model 4) in both samples, as well as
not adding significant R2 increments to composition and configuration
(Table 4).

The only significant CDE variables are population density and median
household income, which increase and decrease LST, respectively. These
results are consistent with findings from other research on Phoenix
(Buyantuyev & Wu, 2010; Harlan et al., 2006; Huang et al., 2011;
Jenerette et al., 2007; Martin, 2008) indicating lower levels of income
and vegetation and higher levels of occupation density concentrated to-
ward the center of the metro-Phoenix SUHI, and increasing levels of in-
comes either at distance from this center or associated with the use of
turf grass (Connors et al., 2013). All other CDE variables were removed
from the analysis because they were collinear with other independent
variables.

Beyond the hypotheses it is noteworthy that the trends in the
model outcomes for both samples are consistent as are the correla-
tion coefficients, with the exception of slightly lower correlations
for Sample B in Models 3 and 5 (Table 3), suggesting modest differ-
ences in CDE variables in the samples. This distinction signals the
need for future exploration of the role of income, preferences, and
HOA rules on land covers. In older parts of Phoenix, higher income
neighborhoods tend to maintain more vegetation, including turf
grass, than lower-income areas (Jenerette et al., 2007, 2011; Larson
et al., 2009a). Newer high-end neighborhoods, however, commonly
require at least some desert- or xeric-scaping (see Chow & Brazel,
2012), which, through the use of the NMI assessment, renders
composition characteristics similar to those displayed in lower
income (largely Hispanic) neighborhoods with large amounts of
bare soil, possibly resulting in similar LSTs. On-the-ground observa-
tion of higher income, desert-scaped and lower income, Hispanic
dominated parcels, however, indicates substantial differences in
landscaping.

It is also noteworthy that the results reported here using the more
recent Sobrino et al. (2008) approach are significantly improved relative
to those generated from their former approach (Sobrino et al., 2004).
The subdivision of the NDVIs and NDVIv and the use of the red band
provides a more accurate assessment of LST in the heterogeneous
urban environment, especially in regard to our bare soil class observed
during the morning.

Overall, our findings are consistent with the emerging literature
signaling that UHI effects are affected by the land-cover composi-
tion of the urban area (e.g.Georgescu et al., 2011; Zheng et al.,
2014; Zhou et al., 2014), but differs from most of this research by
demonstrating the strong role of land configuration as well. The
implications of corpus of these works is that urban areas, especially
those in warm desert climates, could ameliorate the SUHI effect
and the UHI effect at large by attention to the design of neighbor-
hoods and, perhaps, parcels of new developments and to the
reshaping of existing neighborhoods. The essential elements of
this design focus on increasing the compactness and concentration
of vegetation covers and decreasing the same for buildings and im-
pervious surfaces. Much more work is required, however, to pro-
vide metrics and elaboration (e.g., shape) for such configurations.
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5. Study limitations

This study is exploratory and the reported results should be
interpreted in terms of the study's limitations. Foremost, the spatial res-
olutions of the LST (120 m) and land cover (1 m) are incongruent. As a
consequence, the LST constitutes an average of multiple land covers ap-
plied to individual land-cover types. The smaller and less compact the
individual land-cover, the more likely its “real” LST deviates from that
applied here. In addition, we assume that the LST data generated from
a single Landsat image is representative of typical June mid-morning
conditions in Phoenix. Future research should examine other summer
days and time, foremost late summer afternoons when maximum tem-
perature is reached, especially affecting impervious surfaces and build-
ings, and other images of themetropolitan region. Similar examinations
for different seasons are required, as are alternative means of establish-
ing LSTs (e.g.Liu & Zhang, 2011; Mitraka et al., 2013; Sobrino et al.,
2009), including “unmixing” techniques reported by Mitraka et al.
(2013).

In addition, census blocks need not capture the neighborhood as de-
fined by, for example, developers, HOAs, or other factors that may be
used to capture some coherent character of residential parcels, especial-
ly in regard to parcel-level land architecture. Significantly, our neigh-
borhood selection was generated by a random sample of single family
residential parcels and did not control for any other parcel types, such
as multiple residential, recreational, or commercial parcels within the
identified residential area. The NMImeasure of configuration employed
in this study is not compared to results from the use of other shapemea-
sures, such as FRAGSTATS, to determine their compatibility or the influ-
ence of different metric sets on the outcomes. Additionally, the
independent variables employed were selected by the research team,
possibly leading to an omitted variable bias. We did explore backward
correction steps in the regressions and found nothing significant. In
the future, however, we will explore quantile regressions. Finally, our
focus on linking as directly as possible land architecture and LST at the
finest spatial grain as possible led us to the use of demographic and so-
cioeconomic data at the U.S. Census block level, rather than the larger
census block group. How this level assessment affected the model re-
sults will be examined in the future.

6. Conclusions

Employing fine-resolution (1 m) land-cover data and meso-
resolution (120 m) LST data focused on U.S. Census blocks of Phoenix,
AZ, demonstrates the important role of land architecture on the neigh-
borhood SUHI effect. Recognizing its exploratory nature, this study is
the first to indicate that land configuration is more important in its im-
pacts on LST than land composition. That this finding reflects our use of
a new configuration metric, the NMI, deserves research attention and
comparison with other configuration metrics. Consistent with a set of
recent studies, ours demonstrates that the compactness and concentra-
tion of vegetation has the largest cooling impact on LST at the neighbor-
hood scale (census block).

Overall, our results suggest that land architecture of neighborhoods
of Phoenix affect LST and the SUHI, and that this architecture is critical to
neighborhood LST. This result suggests that care in the development or
rearrangement in the composition and configuration of the land-cover
of neighborhoods, including at the parcel level, can be used to amelio-
rate the UHI effect.
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