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1. Introduction 

The activity-based modeling approach has been widely studied in the area of transportation planning and operations 
to better capture various facets of travel behavior and decision making. How to recognize complex resource 
constraints, multi-agent interactions, and consistency through trip chains of different individuals is an important 
concern for accurate activity-based modelling and analysis at the household level. Different modeling paradigms have 
been developed, including deterministic optimization-based models by Recker (1995), and probabilistic micro-
simulation-based utility maximization models by Bhat et al. (2004), Pendyala et al. (2005), Pribyl and Goulias (2005), 
Miller and Roorda (2003), and Arentze and Timmermans (2004).  

Currently, the emerging mobile apps with multi-modal traveler information and personal activity schedules enable 
travelers to intelligently schedule their activities and share their trip requests. In addition, transportation network 
companies such as Uber and Lyft and the forthcoming autonomous vehicle system would allow and encourage a fully 
optimized planning process for mapping household activities and travel requests (to be met by personal or shared 
vehicles). In this paper, we focus on the household activity pattern problem (HAPP) that is first systematically 
formulated by Recker (1995), which aims to find the optimal path of household members for completing their 
prescribed activities based on the available number of vehicles, scheduled activity participation, and ride-sharing 
options within a long period as the unit of analysis.  

Typically, based on a conventional mixed integer linear programming model for the pickup and delivery problem 
with time windows (PDPTW), many typical cases in HAPP, e.g., five cases in a classical paper by Recker (1995), 
require a very large number of linear and integer constraints to capture the complex rules in real-world household-
level activity scheduling progress. Recently, several algorithms had been proposed to address more realistic side 
constraints and large-sized examples, to name a few, Chow and Recker (2012) and Kang and Recker (2013). In 
addition, Liao et al. (2013) presented a new set of super-network models for various person-level activity scheduling 
problems, where the multi-dimensional network construct contains travel links, state transition links and activity 
transaction links. To formulate HAPP as a mathematically rigorous model, how to fully consider complex coupling 
constraints among three layers, namely household members, vehicles and mandatory/optional activities, is extremely 
challenging, especially for large-scale multi-modal transportation network with flexible ride-sharing and household 
member activity-coordination options. 

To consider the traffic congestion and feedback loops associated with complex trip interactions, there are a wide 
range of studies aiming to combine ABM and DTA to better capture the interplay between human activity-travel 
decisions and underlying congested networks with tight road capacity constraints. For example, Lin et al. (2008) 
proposed a conceptual framework and explored the model integration of activity-based model (CEMDAP) and 
dynamic traffic assignment model (VISTA).  Pendyala et al. (2012) further integrated activity-travel demand models 
(OpenAMOS), DTA tools with the long-term land use modeling layer (UrbanSim). Based on mathematical programs 
of HAPP, Kang et al. (2013) studied the network design problem considering the interaction between the household-
level activity pattern and infrastructure changes. Chow and Djavadian (2015) proposed a new market equilibrium 
model to capture the interaction of traveler activity schedules in a capacitated system with a macroscopic flow 
restriction on a link or node facility. In a recent study by Fu et al. (2016), the intra-household interactions are 
considered through Markov decision processes and the road congestion effect is reflected by the static travel time 
function. To further study the impacts of dynamic traffic management strategies and real-time traveler information 
provision, Pendyala et al. (2017) proposed a tightly integrated modeling framework for representing activity-travel 
demand and traffic dynamics in an on-line environment. 

This paper first aims to cast HAPP problems as number of time-dependent and state-dependent path searching 
problems, which have a class of computationally efficient algorithms available in discretized space-time network and 
high-dimensional space-time-state networks. To capture the impacts of traffic congestion on activity generation and 
scheduling, this paper also reformulates two special cases of HAPPs as system-optimal multi-household activity 
scheduling subject to the tight road capacity constraints. The key is how to prebuild a set of embedded finite state 
machines (FSM) in a network to precisely represent and translate side constraints from the traditional models, which 
could eliminate activity time window and vehicle selection constraints in the resulting optimization model. 
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Specifically, we consider Case A as Multi-vehicle and Multi-person vehicle routing problem with mandatory and 
discretionary activities. Further, with the given ride-sharing options for each household, we propose one more 
dimension to represent the activity performing status in each vehicle and model our Case B  as Multi-vehicle and 
Multi-person ridesharing problem with mandatory and discretionary activities. These two problems can be formulated 
as 0-1 integer linear programming models, with the space-time-state network being indexed through vehicle’s 
location���, vehicle’s timestamp ��� and cumulative activity completion state���. Then the road capacity constraint 
can be directly added to model the network congestion and resulting activity scheduling change. Through dualizing 
the capacity constraints to the objective function by Lagrangian relaxation, our proposed model can be further solved 
through time-dependent state-dependent least cost path-finding algorithms, which permits the use of fast 
computational algorithms on large-scale high-fidelity transportation networks. 

 
Nomenclature  
  
� Set of nodes in the physical network, including necessary virtual nodes 
�� Set of vehicle nodes for vehicle selection 
� Set of links in the physical network, including necessary virtual links 
� Set of household members  
�� Set of household members who have mandatory activities 
�� Set of household members who chooses one mandatory activity from multiple candidates 
�� Set of household members who have discretionary activities 
� Set of available vehicles 
� Set of activities  
����� Set of household member �’s candidate activities for one kind of mandatory activity  
�� Set of mandatory activities of vehicle �’s driver 
� Set of  vertices in the space-time/space-time-state network 
� Set of  edges/arcs in the space-time/space-time-state network 
� Set of cumulative vehicle activity-performing state 
���� ��� Set of  edges/arcs of household member �’s mandatory activity �� 
���� ��� Set of  edges/arcs of household member �’s candidate activity �� for one kind of mandatory 

activity 
���� ��� Set of  edges/arcs of household member �’s discretionary activity �� 
���� ��� Set of  edges/arcs of mandatory activity �� of vehicle �’s driver 
�� � Index of node set � 
��� �� Index of link set � 
�� � Index of time intervals in the space-time-state network 
���� Index of state in the space-time-state network 
��� �� Index of vertex in the space-time network 
��� �� �� �� Index of edges/arcs in the space-time network 
��� �� �� Index of vertex in the space-time-state network 
��� �� �� �� �� ��� Index of edges/arcs in the space-time-state network 
� Index of household member set	� 
� Index of activity set	� 
���� �� Travel time of link ��� ��  
���������  Travel cost of arc ��� �� �� �� of person � in the space-time network 
��������������  Travel cost of arc ��� �� �� �� �� ��� of vehicle � in the space-time-state network 
���� ��� The time window of event �, such as, activity starting time window, activity ending time 

window 
����������� Earliest departure time of household member �/ vehicle �  
��������� Origin node of household member �/ vehicle � 
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 Destination node of household member / vehicle  
 The time horizon in the space-time network/space-time-state network 

  Capacity of arc  
  Capacity of arc  

 Binary variable, , if household member visits the traveling/waiting arc  in the 
space-time network;  otherwise 

 Binary variable, , if vehicle visits the traveling/waiting arc  in the 
space-time-state network;  otherwise 

  

2. Problem statement  

In this paper, our study focuses on three particular cases in HAPP (namely A, B, C) and further extends to one 
more general case D. The general given input includes the population used for activity generation, a physical 
transportation network, a set of different types of activities (mandatory, semi-mandatory, optional activities) with 
specific time windows and utility values, a set of vehicles, as well as the activity/vehicle assignment set to each 
household member. By adapting the classical assumption/definition from Recker (1995), we present the following 
problem statements.  

 (1) Case A is a multi-vehicle and multi-person vehicle routing problem with mandatory and discretionary 
activities, which is similar to Case IV in the paper by Recker (1995). (i) Members of the household share a set of 
vehicles; a subset of vehicles may be available for use by any member of the household, and the remainder may be 
reserved for use by certain members; (ii) A subset of activities can be performed by any member of the household, 
and the remaining activities must be performed by certain members; (iii) Certain members can have specific 
mandatory activities or optional activities;  (iv) Some members may perform no activities; some vehicles may not be 
used.  

(2) Case B is a multi-vehicle and multi-person ridesharing problem with mandatory and discretionary activities, 
which can be treated as a special sub-problem of Case V in the paper by Recker (1995). The specific definition is: (i) 
the ride-sharing pattern that which household members will share one vehicle and which one is the driver has been 
given; (ii) A subset of activities can be performed by any member of the household, and the remaining activities must 
be performed by certain members; (iii) Certain members can have specific mandatory activities or optional activities. 

(3) Case C is an extension of cases A and B, which considers tight road capacity constraints to capture the 
underlying congestion in physical transportation networks, so that the influence of time-dependent link travel time on 
household activity patterns can be observed. As a result, this case is a system optimal multi-household activity 
scheduling problem under time-varying traffic conditions. 

(4) Case D is a dynamic household-level equilibrium problem where each household is inclined to choose the 
optimal activity pattern, which considers vehicle selection, mode choice and ride-sharing options simultaneously. As 
studied in a recent paper by Liu and Zhou (2016), when there is no link capacity constraint, each agent (e.g., passenger, 
vehicle, or household) can choose the best/shortest path without affecting each other. Once the limited resource 
constraint is strictly considered, some agents may have to accept a longer path in order to finish their own travel and 
this kind of decision mechanism could invoke bounded rationality to those agents.  

Specially, Fig.1 (a) and (b) specifically compares the data flow of (i) existing integration of ABM and DTA and 
(ii) our proposed models. The simulation-based integration in Fig.1 (a) focuses on searching individual activity-travel 
pattern under dynamic user equilibrium conditions, and the mathematical program oriented modelling framework 
proposed in this paper aims to optimize the household activity decisions with system optimal goals under household-
level activity requirements and network capacity constraints. In our future study, Case D will be further examined to 
study possible dynamic household-level equilibriums with household activity interactions.  

 J. Liu et al./ Transportation Research Procedia 00 (2016) 000–000 5 

 

 
Fig. 1. (a) Existing integration framework of ABM and DTA; (b) Proposed modelling framework of Case C 

2.1 Network construction and conceptual illustration of Case A 

For illustrative purposes, a hypothetic three-node network shown in Fig. 2(a) is used to explain the problem 
addressed by Case A. There are two household members (  and ), two available vehicles (  and ), and two 
activities (  and ). The available vehicle set and activity set of household members  and  is { , } and { }, 
and { , } and { }, respectively. The two activities belong to the mandatory activity and should be finished finally. 

In order to model those requirements above, the physical network is modified as shown in Fig. 2(b), where the 
previous home node and activity nodes are split as several nodes. The detailed explanations are as follow. First, the 
home node is extended as six nodes, where (i) each household member has his/her dedicated node as his/her origin 
node, (ii) two vehicle nodes are created and one can view the links between household member origin node and vehicle 
nodes as vehicle selection links, while each vehicle node can only be visited less than or equal to once by all 
passengers, and (iii) node D serves as the super destination node. Moreover, to follow an activity-on-the-link 
representation scheme, the extended network on the right has activity starting node 1' and ending node 1'' 
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corresponding to the activity node 1 on the left-hand side, and the link between the two nodes can be used to represent 
the required activity time duration. 

 
Fig. 2. (a) Physical network; (b) Corresponding modified network 

In order to consider passenger-to-vehicle preference, the travel costs on those vehicle selection links can be 
passenger-specific. For example, the travel cost from passenger ’s origin to the super destination is 0, which 
indicates that when passenger  stays at home as one particular vehicle selection, there is no travel cost. In addition, 
the travel cost on link  is higher than that on link , indicating passenger ’s higher preferences toward 
vehicle 2 compared to vehicle 1.  

Each activity in HAPP typically has one specific time window, then we assume that the beginning time windows 
for (i) passengers  and  and (ii) activities  and  are [1,3], [1,4], [9,10], and [20, 21], respectively, along the 
total time horizon of 32 time units. Furthermore, the waiting cost of each time interval at origin nodes and destination 
node is assumed to be 0, and the waiting at activities nodes has a cost of 1 at each time interval. Within a deterministic 
disutility minimization framework, we assume negative cost values on activity links shown in Fig. 2(b).  

A standard time-discretized space-time network can be constructed through the procedure proposed in the papers 
(Tong et al., 2015; Liu and Zhou, 2016; Lu et al., 2016), and the feasible space-time prism can be greatly reduced as 
illustrated in Fig. 3. As a result, the problem becomes how to find the best passengers’ trajectory satisfying all time 
windows and activity requirements in the space-time network so as to minimize the total travel cost of all household 
members.  
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As a remark, the (time-dependent) travel time on each travelling arc could be given in advance to reflect the 
congestion due to complex travel route choice interactions in the real-world traffic network. However, in the following 
Case C, we directly consider tight link/arc capacity inside the model to compute the resulting congestion effect 
explicitly. When the number of inflow vehicles exceeds the capacity of traveling arc, some vehicles have to wait at 
the waiting arc for available travelling arc capacity at next time interval. The detail about how tight capacity constraint 
is considered in space-time networks can be found in recent papers by Lu et al. (2016) and Liu and Zhou (2016), and 
their agent-based approach does not use the traditional flow-based nonlinear link/path cost function. 

2.2 Network construction and conceptual illustration of Case B 

The most difficult challenge in modeling the household-level ridesharing problem is how to recognize the complex 
coordination among different household members, pertaining to the following questions such as who is the driver and 
where/when the driver should drop off and pick up passengers. Considering offline planning applications, our Case B 
assumes that the set of possible ridesharing patterns is pre-specified with the given drop-off and pick-up locations 
with time windows to choose.  

An illustrative example is given in Fig. 4(a), where there are two household members (  and ), one available 
vehicle, and three activities ( ,  and ). The given ride-sharing pattern requires that driver  needs to drop off 
the passenger  to his/her own activities within given beginning time windows, and then this driver needs to pick up 

 from the activity locations within given activity ending time windows. The driver  could accompany passengers 
to perform their activity, and also can leave to conduct his/her own mandatory activities. In this example with a quite 
busy household activity agenda, the driver has to perform the mandatory (deriver as D) activity  while the passenger 
needs to finish the mandatory (passenger as P) activities  and . 

Fig. 4 (a) Physical network; (b) Corresponding modified network 
Accordingly, we construct a drop-off node and a pick-up node for each passenger at the activity location in Fig. 

4(b). It should be remarked that, in a typical case, one is dropped off and picked up at the same activity location, but 
our formulation also make it possible that one passenger is dropped off at one activity and then picked up at another 
location if he/she can take other travel modes (walking, transit or taxi) to the (spatially different) pick-up location. 
The starting node and ending node of the passenger activity (shown as P activity 3' and 3'') is considered as a special 
drop-off node and pick-up node in drivers’ network. 

In addition to using the two dimensions (space and time) to depict vehicles’ travel trajectory, this section will 
introduce one more state dimension to model ride-sharing status. More precisely, the state code covers each traveler’s 
service status, including the driver and all passengers. Through adding one more dimension and exogenously listing 
the possible relation of location, time, and vehicle state, a set of hard activity-performing constraints for the driver and 
passengers in each vehicle could be embedded in advance in the space-time-state network, which will greatly reduce 
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the set of side constraints and make our proposed mathematical model tractable for network flow optimization 
algorithms. 

To solve the single-vehicle routing problem with pickup and delivery service with time windows (VRPPDTW), 
Psaraftis (1983) proposed a cumulative service state �1,2,3� to record the service status of each passenger. In this 
paper, we adopt the cumulative state representation as �0,1,2�: 0 means that the activity has not been performed, 1 
means that the activity is being performed or the passenger has been dropped off at the activity location but not been 
picked up, and 2 means that the activity has been performed or the passenger has been picked up. While Mahmoudi 
and Zhou (2016) firstly proposed a third dimension as vehicle carrying state to solve the VRPPDTW, our third 
dimension of household-oriented state (with a rich representation of different household members, driver, passenger 
and associated activities) and the process of state transition are systematically different with those of  Mahmoudi and 
Zhou (2016).  

Since one activity could have 3 different states, if there are � activities for all passengers in one vehicle, it would 
require 3� variables to represent all possible states. The total number of states depends on the number of activities. 
However, if one passenger has multiple activities, the possible states could be reduced because one passenger cannot 
perform multiple activities simultaneously. Also, the tight time window and transition preference for each activity can 
greatly reduce the number of possible states reasonable within feasible a space-time prism. In addition, the rapid 
development of hardware of computers could provide more memory and faster computation speed to address those 
large number of state search decisions. 

We now use the example above to illustrate our cumulative activity-performing state and the state transition at 
different activity locations and times. There are one vehicle with two household members and three activities, so the 
vehicle’s activity-performing state can be ���, ��, ���,  or more generically denoted as ��, �, ��, where the first slot 
represents the driver’s activity-performing state of activity �� and the second slot and the third one represent passenger 
��’s two activity-performing states of activities ��  and �� , respectively.  To reduce the number of states in this 
combinatorial optimization problem, one can also implement the activity-performing requirement as constraints on 
the activity link (1� � 1��for the driver in the mathematical model, so the resulting reduced state vector is ���, ���.  

Since activities �� and �� are mandatory for passenger ��, all possible vehicle’s state could be ��� � 0, �� � 0�, 
�1,0�, �2,0�, �0,1�, �0,2�, �2,1�, �1,2�, and �2,2� by enumeration. It is noticed that ��� � 1, �� � 1� is not included 
because it is impossible that passenger �� is dropped off at two locations simultaneously. Fig. 5(a) illustrates a graph 
of possible state transitions for the example above. In addition, if one of multiple activities with same type can be 
performed, such as, shopping at location 2 vs. at location 3 for passenger 2, he/she may just need to choose one of the 
two locations, so the resulting possible state transition will be that shown in Fig. 5(b). 
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Fig. 5 (a) Both activities need to be performed; (b) Exact one of two activities should be performed 
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There are three types of mutually exclusive multidimensional arcs in the space-time-state network: 
(1) Travelling arcs ��� �� �� �� �� �� � �� with a time-dependent cost on link ��� �� departing at time �, with the same 

state � as transportation services do not change activity performing states.  
(2) Waiting arcs ��� �� �� � � �����′� with a unit of waiting costs at location � from time � to time � � �. A special 

Case is that, the waiting cost should be zero at the super home origin and destination nodes.  
(3) State transition/service arcs ��� �� �� �� �� �′� with a utility (i.e. negative travel cost) when performing their 

activities at the drop off location. As shown in Fig. 6, at node � � 2�, time � � 6, 7 or 8 within a given time window, 
we have a number of possible state changes, for example,  � � ����� with a possible transition to �′ � �����, or � �
���2� with a possible transition to �′ � ���2�. As the ending state for �� must be 2, passenger 2 will be picked up 
automatically among any feasible solutions and there is no benefit at pick-up nodes to avoid double counting of service 
utilities.  
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Fig. 6 Feasible arcs at node 2′ in a space-time-state network 

2.3 Conceptual illustration of Case C 

As an extension of Cases A and B, Case C strictly honors the travelling arc capacity in the space-time network and 
space-time-state network, similar to the consideration in the recent papers along this line (Lu et al., 2016; Liu and 
Zhou, 2016). Compared with the constant link free-flow travel time, the underlying time-varying congestion could 
dramatically affect the passenger/vehicle’s departure time, route choice, mode choice, destination choice, and even 
activity generation.  

Without loss of generality, we adopt a time-invariant network (Liu and Zhou, 2016) shown in Fig. 7 to illustrate 
the congestion effect for two households with two different activities, where household 1 (household 2) has one 
member who departs from home node �� (��) to perform activity �� (��� then go back home, respectively.  
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Fig. 7 A simple illustrative network for case C 

 What can be observed in Table 1 is summarized as follows and those observation can also be applicable to space-
time and space-time-state networks. 

(1) When the link capacity is not taken into account, the vehicles from both households choose their own shortest 
path. The physical path node sequences of households 1 and 2 is 1 → 3 → 2 → 4 → 2 → 3 → 1 with path travel time 
of 6. 

(2) When the link capacity is considered, the system optimal objective of Case C could make household 1 change 
its path as  1 → 2 → 4 → 2 → 1 with a larger path cost of 8. Meanwhile, household 2 would switch a new path as 
1 → 3 → 4 → 3 → 1 with an increased cost of 10. 

(3) In observation (1), the travel time of household 2 from 1 to 4 is 3, but now it will increase to 5 due to link 
capacity constraint in observation (2). If the passenger of household 2 has a strict time window for activity 2, the 
increased path travel time from 1 to 4 could make passenger depart earlier to satisfy the time window.  

(4) If the time budget of household 2 from 1 to 4 is less than 5, the passenger would cancel activity 2 or may change 
to an alternative by switching to other possible travel modes.  

(5) If Case D is considered for possible equilibrium conditions, one household could choose the previous shortest 
path and the other has to accept the longer path, 1 → 4 → 1, with total travel time of 14. It also could lead to changes 
in departure time, activity cancel or mode choice. In addition, Braess paradox exists in the network above, so blocking 
links 3 → 2 and 3 → 2 definitely could improve the transportation efficiency and further influence household activity 
patterns from the perspective of traffic managers. 
Table 1.  Result analysis of different cases 

Different cases 

Physical path selection 

Remarks Path 1

 

Path 2 

 

Path 3

 

Path 4

 
Case A/B: without link capacity 
constraint � � � √; 		√ Benchmark 

Case C: system optimal with link 
capacity constraint √ √ � � 

Compared with Case A/B, 
household has possible departure 
time change, route choice change, 
and possible activity cancel or mode 
choice change due to link capacity 
constraints. 

Case D: household 
equilibrium with 
link capacity 
constraint 

With 
links 3 ↔
2 

� � √ √ 
Compared with Case C, the total 
travel time is increased. 

Without 
links 3 ↔
2 

√ √ � � 
Braess paradox occurs, as the 
system-wide cost reduces without 
the link. 

√: One household (vehicle) chooses the corresponding path; 
�: No household (vehicle) chooses the corresponding path; 
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3. Mathematical programming models 

3.1 space-time network-based optimization model for Case A  

Based on the two-dimension space-time network constructed in section 2.2, we formulate our mathematical 
programing model that satisfies all requirements in Case A, which aims to optimize vehicle selection, activity-
performing selection and route guidance for each household member so as to minimize the total household travel cost.  

Model 1: 
Objective function 
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(2) Vehicle selection constraint at vehicle selection node: 
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(3) Mandatory activity participation for one specific household member: 
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(4) Mandatory activity with multiple candidates for one household member: 
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(5) Discretionary activity for each household member 
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(6) Binary variable: ( , , , ) {0,1}p
i j t sx   

The objective function is to minimize the total system travel cost of all household members, where the travel cost 
 on each arc has been predefined in the space-time network construction stage. Eq. (2) is the standard person-

based flow balance constraint. Eq. (3) means that each household member can only choose one vehicle or don’t choose 
any vehicles (a.k.a. staying at home in our example). Eq. (4) represents that the activity duration arc of each mandatory 
activity of a specific household member should be visit exactly once by that household member. For example, if one 
household member must go to a company for work, one of working arcs must be visited exactly once by the household 
member. Eq. (5) ensures that if one household member needs to perform one type of activity with multiple candidate 
locations/time durations, he/she must choose one candidate to complete one activity instance among all options. For 
example, if one household member needs to go shopping and there are two candidate shopping malls, finally only one 
shopping mall should be visited exactly once to mark the completion state of the shopping activity. Inequality (6) 
represents the flexibility association with those optional activities, as they could be performed or not, depending on 
the availability of those eligible household members and the required travel cost to reach those locations. In short, the 
proposed model in this section is a 0-1 integer linear programing model, or more precisely, a multi-commodity flow 
optimization problem with a limited set of side constraints. This compact formulation enables the use of standard 
optimization solvers for a real-world transportation network. 
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Table 1.  Result analysis of different cases 
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Case D: household 
equilibrium with 
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� � √ √ 
Compared with Case C, the total 
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Without 
links 3 ↔
2 

√ √ � � 
Braess paradox occurs, as the 
system-wide cost reduces without 
the link. 

√: One household (vehicle) chooses the corresponding path; 
�: No household (vehicle) chooses the corresponding path; 
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3. Mathematical programming models 

3.1 space-time network-based optimization model for Case A  
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programing model that satisfies all requirements in Case A, which aims to optimize vehicle selection, activity-
performing selection and route guidance for each household member so as to minimize the total household travel cost.  
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Objective function 
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(5) Discretionary activity for each household member 
 

   
, , ,

, : , , , ,

1,  
q

p
i j t s

i t i j t s E p
q

a

x p P


    (6) 

(6) Binary variable: ( , , , ) {0,1}p
i j t sx   

The objective function is to minimize the total system travel cost of all household members, where the travel cost 
 on each arc has been predefined in the space-time network construction stage. Eq. (2) is the standard person-

based flow balance constraint. Eq. (3) means that each household member can only choose one vehicle or don’t choose 
any vehicles (a.k.a. staying at home in our example). Eq. (4) represents that the activity duration arc of each mandatory 
activity of a specific household member should be visit exactly once by that household member. For example, if one 
household member must go to a company for work, one of working arcs must be visited exactly once by the household 
member. Eq. (5) ensures that if one household member needs to perform one type of activity with multiple candidate 
locations/time durations, he/she must choose one candidate to complete one activity instance among all options. For 
example, if one household member needs to go shopping and there are two candidate shopping malls, finally only one 
shopping mall should be visited exactly once to mark the completion state of the shopping activity. Inequality (6) 
represents the flexibility association with those optional activities, as they could be performed or not, depending on 
the availability of those eligible household members and the required travel cost to reach those locations. In short, the 
proposed model in this section is a 0-1 integer linear programing model, or more precisely, a multi-commodity flow 
optimization problem with a limited set of side constraints. This compact formulation enables the use of standard 
optimization solvers for a real-world transportation network. 
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Table 2 offers a systematic comparison for detailed modelling techniques between our proposed model and 
classical model proposed by Recker (1995), specifically between our Case A and Case IV of Recker.  
Table 2. Comparison between Case IV (Recker, 1995) and our Case A 

Modelling constraints Model R4: Case IV (Recker, 
1995) Model 1 for our Case A Remarks 

(1) Time representation Continuous Discretized  

(2) Network representation Abstract physical traffic network Time-discretized space-
time network  

(3) Objective function Eqns (1a)-(1f) with multiple 
goals 

Eqn (1) with travel cost 
only  

(4) Coupling constraints for vehicle 
selection of household member Constraints (40a)-(40b) 

Embedded in the 
modified physical 
network 

 

(5) Vehicle spatial connectivity 
constraints 

Constraints (2), (3), (4’), (5’) and 
(6) 

Constraints (2)-(6) in the 
space-time network for 
modelling constraints 
(5)-(9) 

Model 1 needs to build one specific 
activity duration link for each 
activity to represent the activity 
process 

(6) Vehicle temporal constraints Constraints (7)-(10) 
(7) Household spatial constraints Constraints (26)-(30) 
(8) Household temporal constraints Constraints (31)-(33) 

(9) Illogical activity constraints Constraints (21)-(24) and (36)-
(39) 

(10) Vehicle capacity constraints Constraints (14)-(17) Always satisfied (solo 
driving pattern)  

(11) Activity time window 
constraints 

Constraints (11)-(13) and (34)-
(35) 

Embedded in the space-
time network 

Model R4 provides a starting time 
window and return-home window 
for each activity, but in Model 1 each 
activity only has a starting time 
window and does not have the 
return-home window. Instead, each 
household member has a return-
home window for his/her arrival at 
home 

(12) Travel cost/time budget 
constraint Constraints (18)-(19) Not considered but can 

be easily added  

(13) Variable definitional 
constraints  Binary and continuous variables Binary variables only 

Model R4 is a mixed integer linear 
programming model. Model 1 is a 0-
1 integer linear programming model. 

3.2 space-time-state network-based optimization model for Case B 

Before presenting the model for case B, it should be emphasized that the space-time-state network needs be pre-
built and satisfies the given time windows of each activity and the predefined arc attributes, such as, the location of 
each node, the travel time or travel cost of each arc, and the logically feasible state transition in the three-dimension 
network. More importantly, the slate of passengers’ activity-performing states in the final solution for each vehicle 
exactly depends on the type of different activities, mandatory activity vs. discretionary activity. As shown in Fig. 5 
(a) in section 2.3, when the two activities are mandatory for passenger 2, the super starting state at the origin and super 
ending state at the destination are  and , respectively. On the other hand, when only one of two activities 
needs to be executed in a daily schedule in Fig. 5(b), the final arrival state could be  or , with a virtual ending 
state shown in Fig. 5(a).  

Similarly, if the two activities are optional, the final state could be one of four possible alternatives , , 
 or , while the final selection of the optimal activity states is highly depending on the vehicle and time 

resources it consumed along the daily activity chain as well as the corresponding objective function in terms of benefit 
and travel costs. To satisfy the flow balance constraint for a network flow programming model, we need to build a 
virtual super ending state, as shown in Fig. 8(b), with connections from those possible ending states at the physical 
destination, e.g., four states in the above example, , ,  and .  This state-transition based modeling 
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paradigm could systematically capture the complicated possible interactions between multiple household members in 
a daily scheduling process.   
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Fig. 8 State transit graph (a) one of two activities should be performed; (b) Two activities are optional 

Based on the prebuilt 3D space-time-state network and given ride-sharing patterns, we now present our 
optimization model that satisfies all requirements in Case B that provides the optimal vehicle route guidance to the 
driver(s) to enable the scheduling of everyone’s activities.  

Model 2: 
Objective function 
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(2) Mandatory activity performing constraint for the driver on the activity arcs (including ride-sharing): 
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(3) Binary variable:  , , , , , 0,1v
i j t s w wx    

The objective function in Eq. (7) aims to minimize the total travel cost of the household, including the travel cost 
of vehicles and the benefit from everyone’s performed activities. Eq. (8) is the standard vehicle-based flow balance 
constraint. With the given initial departure state  and virtual ending states for each vehicle, the given activity 
requirements of each passenger have been embedded in the space-time-state network. Similar to Eq. (4), Eq. (9) 
ensures that the household driver can finish his/her mandatory activity with given time windows and time duration, 
which means that the activity duration arc of each mandatory activity should be visit exactly once by the driver/vehicle. 
The decision variable  is a binary variable that indicates whether or not the arc  will be 
chosen in the space-time-activity path of vehicle . Finally, the model we proposed is also a 0-1 integer linear 
programing model, which has one more dimension compared to Case A but still can be directly solved in GAMS in a 
reasonable-size network.  

In our Case B, the ridesharing pattern is prescribed, so the case can be viewed as a sub-problem of Case V in the 
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each node, the travel time or travel cost of each arc, and the logically feasible state transition in the three-dimension 
network. More importantly, the slate of passengers’ activity-performing states in the final solution for each vehicle 
exactly depends on the type of different activities, mandatory activity vs. discretionary activity. As shown in Fig. 5 
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paradigm could systematically capture the complicated possible interactions between multiple household members in 
a daily scheduling process.   
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Based on the prebuilt 3D space-time-state network and given ride-sharing patterns, we now present our 
optimization model that satisfies all requirements in Case B that provides the optimal vehicle route guidance to the 
driver(s) to enable the scheduling of everyone’s activities.  

Model 2: 
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(2) Mandatory activity performing constraint for the driver on the activity arcs (including ride-sharing): 
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(3) Binary variable:  , , , , , 0,1v
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The objective function in Eq. (7) aims to minimize the total travel cost of the household, including the travel cost 
of vehicles and the benefit from everyone’s performed activities. Eq. (8) is the standard vehicle-based flow balance 
constraint. With the given initial departure state  and virtual ending states for each vehicle, the given activity 
requirements of each passenger have been embedded in the space-time-state network. Similar to Eq. (4), Eq. (9) 
ensures that the household driver can finish his/her mandatory activity with given time windows and time duration, 
which means that the activity duration arc of each mandatory activity should be visit exactly once by the driver/vehicle. 
The decision variable  is a binary variable that indicates whether or not the arc  will be 
chosen in the space-time-activity path of vehicle . Finally, the model we proposed is also a 0-1 integer linear 
programing model, which has one more dimension compared to Case A but still can be directly solved in GAMS in a 
reasonable-size network.  

In our Case B, the ridesharing pattern is prescribed, so the case can be viewed as a sub-problem of Case V in the 
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paper (Recker, 1995). In Case V of Recker (1995), it requires to build drop-off and pick-up nodes at each activity 
location and the set of available vehicles is expanded by designating driver seat and passenger seat(s) for each vehicle. 
The corresponding model has six categories of constraints, including vehicle temporal constraints, household member 
temporal constraints, vehicle spatial constraints, household member spatial constraints, vehicle capacity and budget 
constraints, and vehicle and household member coupling constraints. In our Case B, we also build drop-off and pick-
up nodes for each activity with specific time windows. Since the ridesharing pattern is given a priori and modelled as 
a pair of drop-off-first then pick-up actions, we do not need identify the specific driver seat and passenger seat(s), and 
the coupling constraints for vehicle and household member is automatically coded through the state transition graph 
or explicitly taken as activity-performing constraints in Eq. (9). The temporal and spatial constraints of vehicle and 
household member are all embedded in the well-structured space-time-state network where the state transition graph 
defines the possible activity visit sequences of passengers/vehicles.  

It should be reminded that if we treat the start node and the end node of the activity duration link for the driver as 
a drop-off node and pick-up node, respectively, the driver’s activities can also be added into the cumulative activity-
performing state. As a result, side constraints (9) can also be embedded in the space-time-state network, and the 
mathematical model above is reduced to a time-dependent state-dependent least cost path-finding problem, which 
could be efficiently solved by dynamic programming with parallel computing technology on large-scale networks.  

As a remark, it is also possible to define another state instead of cumulative activity-performing state to model 
Case B. Based on the specific requirements in one problem, different state definitions could lead to different model 
formulations (less or more side constraints), different network structure and computation complexity. One specific 
example can be found in recent papers by Mahmoudi and Zhou (2016) and Mahmoudi et al., (2016) where they applied 
vehicle carrying state  and vehicle cumulative service state  to solve the VRPPDTWs, respectively, with 
different model formulation, networks, and algorithms. Therefore, our proposed formulation for Cases A and B is not 
the only possible modelling choice, and one should examine the size of state variables and nature of complex 
constraints to reformulate the problem based on the preferred network structure and available space and time 
complexity requirements.  

3.3 Link capacity constraints of Case C 

Since Case A considers a solo-driving pattern, one vehicle can only carry one person. In the mathematical model 
of Section 3.1, the person-based formulation is equivalent to the vehicle-based model. After converting the hourly 
road capacity into "specific time interval-based travelling arc capacity in the space-time network, the tight arc capacity 
constraint can be formulated as, 

 Estjicapx stji
p

p
stji  ),,,(,,,,,,,  (10) 

To consider the “queue spillback” phenomenon, additional inequality needs be added to represent the link storage 
capacity constraint by using cumulative arrival counts and cumulative departure counts on that link. The detailed 
formulation can be found in the paper by Li et al. (2015). 

Similarly, since the mathematical model of Section 3.2 is vehicle-based formulation, the tight capacity constraint 
can be formulated as, 
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Regarding the queue spillback and congestion propagation property from Newell’s simplified Kinematic wave 
model, the specific formulation is similar to the constraints in the paper by Li et al. (2015), but with one more 
dimension w. 

As stated at the end of Section 3.2, the driver’s activity participation constraint can also be embedded in the space-
time-state networks so that case B becomes a time-dependent state-dependent least cost path-finding problem. When 
the road resource capacity constraint (11) is recognized, there are two research directions to solve our proposed system 
optimal problem for large-scale real-world applications: 
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(1) Lagrangian relaxation: the link/arc capacity constraints can be dualized to objective function (7), so a new time-
dependent state-dependent least cost path problem is transformed in the Lagrangian relaxation framework to obtain a 
lower bound. Since the optimal sub-gradient in binary integer programming model is hard to be obtained, the gap 
between the lower bound and the optimal solution cannot be well analytically proved. Meanwhile, when more side 
constraints from queue spillback consideration are taken into account, dualizing those constraints might not be a 
suitable approach. 

(2) Queue-based simulation: Since our proposed model is a system optimal problem considering complex traffic 
dynamics, we can apply event-based simulation to solve the large-scale problem where (i) event-based simulation 
process is consistent with the time-discretized space-time-state network, (ii) different travel flow models can be 
handled, and (iii) the marginal cost analysis by Ghali and Smith (1995) can be used to calculate the least marginal cost 
path for system optimal solutions. The specific algorithm design can refer to the paper by Lu et al. (2016), which 
proposed a simulation framework to solve agent-based eco-system optimal traffic assignment in congested networks. 

4. Numerical experiments 

4.1 Small-scale experiment for Case A 

The proposed model for Case A in Section 3.1 will be tested in the following network shown in Fig. 9(a), where 
there are two household members  and , two available vehicles  and , and four candidate activities , , 

 and . Household member  can choose any one of the two vehicles, and has one mandatory activity  to meet 
with others and one optional activity to swim. Household member  can only choose  and will go to one of the 
two shopping malls. The corresponding modified network is constructed in Fig. 9(b) where nodes 1 and 2 are origin 
nodes, nodes 3 and 4 are vehicle nodes, and node 5 is the final destination node. It is observed from the activity links 
that the time durations and costs for performing activities 1 to 4 are (60, -20), (30, -10), (30, -15), and (20, -20), 
respectively. The specific time windows are listed in Table 3. The waiting cost at each time interval is 0 at origin and 
destination nodes and 1 at activity nodes. 

 

Fig. 9 (a) Physical network; (b) Corresponding modified network 

       Table 3. Specific time window for each event 
Location (node) 1 2 5 11 13 15 17 

Time window [1, 3] [1, 3] [1, 130] [15, 18] [15, 18] [18, 20] [86, 90] 

Our proposed 0-1 integer linear programming model for this example is solved in GAMS. The related source code 
can be downloaded at the website: https://www.researchgate.net/publication/306459026_Experiment_1_1. Finally, 
the total travel cost of this household is 24. The specific optimal solution is listed in Table 4, and can be also illustrated 
in Fig. 10.   
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suitable approach. 

(2) Queue-based simulation: Since our proposed model is a system optimal problem considering complex traffic 
dynamics, we can apply event-based simulation to solve the large-scale problem where (i) event-based simulation 
process is consistent with the time-discretized space-time-state network, (ii) different travel flow models can be 
handled, and (iii) the marginal cost analysis by Ghali and Smith (1995) can be used to calculate the least marginal cost 
path for system optimal solutions. The specific algorithm design can refer to the paper by Lu et al. (2016), which 
proposed a simulation framework to solve agent-based eco-system optimal traffic assignment in congested networks. 

4. Numerical experiments 

4.1 Small-scale experiment for Case A 

The proposed model for Case A in Section 3.1 will be tested in the following network shown in Fig. 9(a), where 
there are two household members  and , two available vehicles  and , and four candidate activities , , 

 and . Household member  can choose any one of the two vehicles, and has one mandatory activity  to meet 
with others and one optional activity to swim. Household member  can only choose  and will go to one of the 
two shopping malls. The corresponding modified network is constructed in Fig. 9(b) where nodes 1 and 2 are origin 
nodes, nodes 3 and 4 are vehicle nodes, and node 5 is the final destination node. It is observed from the activity links 
that the time durations and costs for performing activities 1 to 4 are (60, -20), (30, -10), (30, -15), and (20, -20), 
respectively. The specific time windows are listed in Table 3. The waiting cost at each time interval is 0 at origin and 
destination nodes and 1 at activity nodes. 

 

Fig. 9 (a) Physical network; (b) Corresponding modified network 

       Table 3. Specific time window for each event 
Location (node) 1 2 5 11 13 15 17 

Time window [1, 3] [1, 3] [1, 130] [15, 18] [15, 18] [18, 20] [86, 90] 

Our proposed 0-1 integer linear programming model for this example is solved in GAMS. The related source code 
can be downloaded at the website: https://www.researchgate.net/publication/306459026_Experiment_1_1. Finally, 
the total travel cost of this household is 24. The specific optimal solution is listed in Table 4, and can be also illustrated 
in Fig. 10.   
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   Table 4. Optimal solution for each household member 
Household member :  Household member :  

1 3 3 4 2 4 1 2 

3 6 4 5 4 6 2 3 

6 7 5 15 6 9 3 15 

7 11 15 16 9 13 15 16 

11 12 16 76 13 14 16 46 

12 7 76 77 14 9 46 47 

7 6 77 87 9 6 47 59 

6 5 87 88 6 5 59 60 

It is observed that  should not go to activity 4 (swimming) and  does not need to go to activity 3 (shopping 
mall 2) due to the trade-off between the required travel costs and corresponding activity benefits. Therefore, if we 
increase the benefits of activities 3 and 4 to 17 and 23, respectively, the optimal solution will be that (i) the total cost 
is 22, (ii) household member  will visit activities 1 and 4 sequentially and then go back home, and (iii) household 
member  will visit activity 3 (shopping mall 2) rather than activity 2. Meanwhile, if we assume that the link travel 
time increases due to tight link capacity constraints when more other household activity trips are considered, the 
activity pattern of this household is expected to change again. In short, the final activity selection and route guidance 
are comprehensively evaluated and selected based on the possible time-varying travel cost in the physical network, 
available time windows, and the benefits of performing individual available activities. 

4.2 Small-scale experiment for Case B 

This section will test our proposed model for Case B in Section 3.2 based on the network shown in Fig. 10(a), 
where there are three household members with one driver and two passengers. They will share one vehicle to perform 
their daily activities. The driver  has one mandatory activity  and needs to drop off and pick up two passengers 
to conduct their activities. Passenger  has one mandatory activity  and one optional activity , and passenger 

 has one mandatory activity . The corresponding modified network is plotted in Fig. 10(b) where the activity of 
the driver is represented by one specific activity link and each activity node of passengers is added with two additional 
nodes as drop-off node and pick-up node.  
 

 
Fig. 10 (a) Physical network; (b) Corresponding modified network 

Based on the procedure explained in Section 3.2, the state has three slots as , of which the first two slots are 

 J. Liu et al./ Transportation Research Procedia 00 (2016) 000–000 17 

 

for activities 2 and 3 of passenger  and the last slot is for activity 4 of passenger . We still use cumulative activity-
performing state of  as before. The time window for each event is listed in Table 5. 
    Table 5. Specific time window for each event 

Location 
(node 

number) 

Node 1 
(departure) 

Node 1 
(arrival) Node 10 Node  

11 Node 12 Node  
13 

Node  
8 

Node  
9 

Node  
6 

Time 
window [1, 3] [1, 170] [15, 16] [114, 115] [28, 30] [127, 139] [127, 129] [137, 139] [41, 43] 

 
Based on the time window information, it is impossible that (i) activity 3 happens before activity 2, (ii) the drop-

off event and pick-up event of activity 4 happens before those of activity 2, respectively, and (iii) the drop-off event 
and pick-up event of activity 3 happens before those of activity 4. Therefore, the remaining possible states will be [0, 
0, 0], [1, 0, 0], [1, 0, 1], [2, 0, 1], [2, 0, 2], [2, 1, 1], [2, 1, 2], and [2, 2, 2]. For the convenience of implementation in 
algorithms, we can label each state with one corresponding ID, such as, using 1 to 8 to represent the eight states above 
sequentially. The final possible state transition is demonstrated in Fig. 12, where virtual arcs with virtual ending state 
are also built for developing a single-origin-to-single-destination problem. In addition, the benefit or negative cost of 
performing activity for all passengers is assumed to occur during the state transition at drop-off nodes, as illustrated 
in Section 2.3. The negative travel costs for activities 1,2, 3, and 4 are given as -20, -10, -15, and -15. 

2p

3p

3p

2p

2p

3p

_][_,

_][_,

_][_,

2p

 
Fig. 11 State transition graph 

Based on the constructed space-time-state network, our proposed 0-1 integer linear programming model for this 
example is solved in GAMS. The related source code can be downloaded at the website: 
https://www.researchgate.net/publication/306458887_Experiment_2_1. Finally, the total travel cost of this household 
is 40. The specific optimal solution is listed in Table 6.   
Table 6. Optimal solution for the household 

The only vehicle:  

Remarks Remarks 

1 4 3 15 1 1 Depart at home at time 3 7 2 103 104 3 3  

4 10 15 16 1 1  2 4 104 112 3 3  

10 10 16 16 1 2 
State transition (passenger 

 is dropped off at node 
10 for activity 2) 

4 4 112 113 3 3  

10 4 16 17 2 2  4 11 113 114 3 3  

4 5 17 27 2 2  11 11 114 114 3 4 
State transition (passenger 

 is picked up at node 11 
for activity 2) 

5 12 27 28 2 2  11 4 114 115 4 4  

12 12 28 28 2 3 
State transition (passenger 

 is dropped off at node 
12 for activity 4) 

4 5 115 125 4 4  
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   Table 4. Optimal solution for each household member 
Household member :  Household member :  

1 3 3 4 2 4 1 2 

3 6 4 5 4 6 2 3 

6 7 5 15 6 9 3 15 

7 11 15 16 9 13 15 16 

11 12 16 76 13 14 16 46 

12 7 76 77 14 9 46 47 

7 6 77 87 9 6 47 59 

6 5 87 88 6 5 59 60 

It is observed that  should not go to activity 4 (swimming) and  does not need to go to activity 3 (shopping 
mall 2) due to the trade-off between the required travel costs and corresponding activity benefits. Therefore, if we 
increase the benefits of activities 3 and 4 to 17 and 23, respectively, the optimal solution will be that (i) the total cost 
is 22, (ii) household member  will visit activities 1 and 4 sequentially and then go back home, and (iii) household 
member  will visit activity 3 (shopping mall 2) rather than activity 2. Meanwhile, if we assume that the link travel 
time increases due to tight link capacity constraints when more other household activity trips are considered, the 
activity pattern of this household is expected to change again. In short, the final activity selection and route guidance 
are comprehensively evaluated and selected based on the possible time-varying travel cost in the physical network, 
available time windows, and the benefits of performing individual available activities. 

4.2 Small-scale experiment for Case B 

This section will test our proposed model for Case B in Section 3.2 based on the network shown in Fig. 10(a), 
where there are three household members with one driver and two passengers. They will share one vehicle to perform 
their daily activities. The driver  has one mandatory activity  and needs to drop off and pick up two passengers 
to conduct their activities. Passenger  has one mandatory activity  and one optional activity , and passenger 

 has one mandatory activity . The corresponding modified network is plotted in Fig. 10(b) where the activity of 
the driver is represented by one specific activity link and each activity node of passengers is added with two additional 
nodes as drop-off node and pick-up node.  
 

 
Fig. 10 (a) Physical network; (b) Corresponding modified network 

Based on the procedure explained in Section 3.2, the state has three slots as , of which the first two slots are 
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for activities 2 and 3 of passenger  and the last slot is for activity 4 of passenger . We still use cumulative activity-
performing state of  as before. The time window for each event is listed in Table 5. 
    Table 5. Specific time window for each event 

Location 
(node 

number) 

Node 1 
(departure) 

Node 1 
(arrival) Node 10 Node  

11 Node 12 Node  
13 

Node  
8 

Node  
9 

Node  
6 

Time 
window [1, 3] [1, 170] [15, 16] [114, 115] [28, 30] [127, 139] [127, 129] [137, 139] [41, 43] 

 
Based on the time window information, it is impossible that (i) activity 3 happens before activity 2, (ii) the drop-

off event and pick-up event of activity 4 happens before those of activity 2, respectively, and (iii) the drop-off event 
and pick-up event of activity 3 happens before those of activity 4. Therefore, the remaining possible states will be [0, 
0, 0], [1, 0, 0], [1, 0, 1], [2, 0, 1], [2, 0, 2], [2, 1, 1], [2, 1, 2], and [2, 2, 2]. For the convenience of implementation in 
algorithms, we can label each state with one corresponding ID, such as, using 1 to 8 to represent the eight states above 
sequentially. The final possible state transition is demonstrated in Fig. 12, where virtual arcs with virtual ending state 
are also built for developing a single-origin-to-single-destination problem. In addition, the benefit or negative cost of 
performing activity for all passengers is assumed to occur during the state transition at drop-off nodes, as illustrated 
in Section 2.3. The negative travel costs for activities 1,2, 3, and 4 are given as -20, -10, -15, and -15. 
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Fig. 11 State transition graph 

Based on the constructed space-time-state network, our proposed 0-1 integer linear programming model for this 
example is solved in GAMS. The related source code can be downloaded at the website: 
https://www.researchgate.net/publication/306458887_Experiment_2_1. Finally, the total travel cost of this household 
is 40. The specific optimal solution is listed in Table 6.   
Table 6. Optimal solution for the household 

The only vehicle:  

Remarks Remarks 

1 4 3 15 1 1 Depart at home at time 3 7 2 103 104 3 3  

4 10 15 16 1 1  2 4 104 112 3 3  

10 10 16 16 1 2 
State transition (passenger 

 is dropped off at node 
10 for activity 2) 

4 4 112 113 3 3  

10 4 16 17 2 2  4 11 113 114 3 3  

4 5 17 27 2 2  11 11 114 114 3 4 
State transition (passenger 

 is picked up at node 11 
for activity 2) 

5 12 27 28 2 2  11 4 114 115 4 4  

12 12 28 28 2 3 
State transition (passenger 

 is dropped off at node 
12 for activity 4) 

4 5 115 125 4 4  
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12 5 28 29 3 3  5 5 125 126 4 4  

5 2 29 39 3 3  5 13 126 127 4 4  

2 2 39 40 3 3  13 13 127 127 4 5 
State transition (passenger 

 is picked up at node 13 
for activity 4) 

2 2 40 41 3 3  13 5 127 128 5 5  

2 6 41 42 3 3  5 2 128 138 5 5  

6 6 42 43 3 3  2 1 138 148 5 5 Arrive at home at time 148 

6 7 43 103 3 3 The driver  performs 
activity 1 1 1 148 149 5 8 

State transition (from final 
state to assumed final state, 
the virtual arc cost is 0) 

 
It is observed that passenger  will not perform activity 3 due to the trade-off between the required travel costs and 
corresponding activity benefits. If we increase the benefit of activity 3 from 15 to 20, the optimal solution will change 
to be that (i) the total cost is 37, and (ii) activity 3 will be performed by passenger . Moreover, when the link travel 
time is modelled as a time-dependent attribute due to road congestion effect, the final household activity pattern is 
expected to change accordingly. 

4.3 Medium-scale experiment within a Lagrangian relaxation framework using cumulative activity-performing state 

This section aims to examine the computation efficiency of using cumulative activity-performing state for a general 
HAPP in a medium-scale transportation network.  We choose a subarea of Phoenix regional network as our study case 
with 1186 nodes, 3164 links and 387 activity locations, shown in Fig. 12. The given input data for this experiment are 
listed in Table 7. 
Table 7. The input data of this experiment 

agent
_id 

agent_t
ype 

from_nod
e_id 

to_node
_id 

departure_time
_start 

departure_time_w
indow 

arrival_time
_start 

arrival_time_wi
ndow 

base_pr
ofit 

optio
nal 

1 0 23 23 30 5 40 5 150 0 

2 0 24 24 10 20 70 10 133.33 0 

3 0 26 26 40 10 60 5 83.33 0 

4 0 25 25 20 20 80 5 150 0 

5 0 39 39 70 5 90 5 133.33 0 

6 0 35 35 20 5 110 5 183.33 0 

7 0 38 38 35 10 120 5 133.33 1 

Veh 1 1 13 13 1 1 120 1   

Veh 2 1 13 13 1 1 120 1   

“agent_id” could be activity id or vehicle id, “agent_type” = 1 for vehicles, and 0 means activities. Field 
“from_node_id” and “to_node_id” are the same and define (i) the activity performing location or (ii) vehicle’s 
origin/destination (home). “departure_time_start” defines the start time of activity or vehicle departure, and 
“depature_time_window” is the feasible time window duration. “arrival_time_start”, and “arrival_time_window” 
defines the activity/vehicle end time window. “base_profit” is the benefit/utilities of performing the corresponding 
activity. The “optional” flag indicates that if an activity is optional, its value is 1, otherwise it is mandatory as 0. As a 
result, the problem becomes that two vehicles at home (node 13) plans to perform 6 mandatory activities and 1optional 
activity. 
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Fig. 12 One subarea of Phoenix regional transportation network 

To solve this problem, we use cumulative activity-performing state {0,1,2} to record the activity completion 
process. It is reminded that the maximum number of possible states could be 3� for 7 activities. In order to model the 
competition for one activity by two vehicles simultaneously, we dualize that constraint to our objective function and 
adopt the forward dynamic programming algorithm within a Lagrangin relaxation framework, which can refer to the 
process of solving the VRPPDTW for multiple vehicles by Mahmoudi and Zhou (2016). The related C++ source code 
and data set can be downloaded at the website: https://github.com/xzhou99/Agent-Plus/tree/master/HAPP. Table 8 
lists the impact of different number of activities on the CPU computation time of 5 Lagrangian iterations (for 
distributing different tasks to two vehices) and computer memory usage. In the above case, the vehicle/activity 
preference for household members is not considered. If a pre-specified vehicle-to-activity mapping is given, the search 
space in the space-time-state network could be further reduced.   

   Table 8. CPU computation time and memory use under different number of activities 

# of activities Maximum numbers of activity 
performing states CPU time (seconds) RAM (GB) 

4 81 15.5 0.3 

5 243 38.2 1.3 

6 729 112.3 3.6 

7 2187 337.4 11.3 

4.4 Large-scale experiment within a simulation-based framework with simplified activity representation and road 
capacity constraints 

This section aims to present the initial test result of the simulation-based approach for system optimal dynamic 
vehicle routing under road capacity constraints. The Salt Lake City regional traffic network is selected and it has 
13,923 nodes, 26,768 links and 2,302 zones. The total number of simulated vehicles is about 1.35 million from 15:00 
to18:00. The traffic flow model chooses point queue model, which just considers the tight road capacity constraints. 
The details of implementing spatial queue model and Newell’s simplified kinematic wave model by simulation can 
be found in the paper (Zhou and Taylor, 2014). 

This experiment can be treated as a special version of Case A. Each origin zone is analogous to one household and 
those destination zones can be viewed as those mandatory activity locations. The process that vehicles depart from 
origin to destination is like that household members complete their mandatory activities with flexible time windows. 
The simulated average trip time index (mean trip simulated travel time/trip free-flow travel time) of 100 iterations is 
depicted in Fig. 13 and finally shows a convergence pattern. A parallel computing technique (Qu and Zhou, 2017) is 
embedded in the simulation process, and the search process for single activity is extremely simple compared to the 
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5 2 29 39 3 3  5 13 126 127 4 4  

2 2 39 40 3 3  13 13 127 127 4 5 
State transition (passenger 

 is picked up at node 13 
for activity 4) 

2 2 40 41 3 3  13 5 127 128 5 5  

2 6 41 42 3 3  5 2 128 138 5 5  

6 6 42 43 3 3  2 1 138 148 5 5 Arrive at home at time 148 

6 7 43 103 3 3 The driver  performs 
activity 1 1 1 148 149 5 8 

State transition (from final 
state to assumed final state, 
the virtual arc cost is 0) 

 
It is observed that passenger  will not perform activity 3 due to the trade-off between the required travel costs and 
corresponding activity benefits. If we increase the benefit of activity 3 from 15 to 20, the optimal solution will change 
to be that (i) the total cost is 37, and (ii) activity 3 will be performed by passenger . Moreover, when the link travel 
time is modelled as a time-dependent attribute due to road congestion effect, the final household activity pattern is 
expected to change accordingly. 

4.3 Medium-scale experiment within a Lagrangian relaxation framework using cumulative activity-performing state 

This section aims to examine the computation efficiency of using cumulative activity-performing state for a general 
HAPP in a medium-scale transportation network.  We choose a subarea of Phoenix regional network as our study case 
with 1186 nodes, 3164 links and 387 activity locations, shown in Fig. 12. The given input data for this experiment are 
listed in Table 7. 
Table 7. The input data of this experiment 

agent
_id 

agent_t
ype 

from_nod
e_id 

to_node
_id 

departure_time
_start 

departure_time_w
indow 

arrival_time
_start 

arrival_time_wi
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base_pr
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1 0 23 23 30 5 40 5 150 0 

2 0 24 24 10 20 70 10 133.33 0 

3 0 26 26 40 10 60 5 83.33 0 

4 0 25 25 20 20 80 5 150 0 

5 0 39 39 70 5 90 5 133.33 0 

6 0 35 35 20 5 110 5 183.33 0 

7 0 38 38 35 10 120 5 133.33 1 

Veh 1 1 13 13 1 1 120 1   

Veh 2 1 13 13 1 1 120 1   

“agent_id” could be activity id or vehicle id, “agent_type” = 1 for vehicles, and 0 means activities. Field 
“from_node_id” and “to_node_id” are the same and define (i) the activity performing location or (ii) vehicle’s 
origin/destination (home). “departure_time_start” defines the start time of activity or vehicle departure, and 
“depature_time_window” is the feasible time window duration. “arrival_time_start”, and “arrival_time_window” 
defines the activity/vehicle end time window. “base_profit” is the benefit/utilities of performing the corresponding 
activity. The “optional” flag indicates that if an activity is optional, its value is 1, otherwise it is mandatory as 0. As a 
result, the problem becomes that two vehicles at home (node 13) plans to perform 6 mandatory activities and 1optional 
activity. 
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To solve this problem, we use cumulative activity-performing state {0,1,2} to record the activity completion 
process. It is reminded that the maximum number of possible states could be 3� for 7 activities. In order to model the 
competition for one activity by two vehicles simultaneously, we dualize that constraint to our objective function and 
adopt the forward dynamic programming algorithm within a Lagrangin relaxation framework, which can refer to the 
process of solving the VRPPDTW for multiple vehicles by Mahmoudi and Zhou (2016). The related C++ source code 
and data set can be downloaded at the website: https://github.com/xzhou99/Agent-Plus/tree/master/HAPP. Table 8 
lists the impact of different number of activities on the CPU computation time of 5 Lagrangian iterations (for 
distributing different tasks to two vehices) and computer memory usage. In the above case, the vehicle/activity 
preference for household members is not considered. If a pre-specified vehicle-to-activity mapping is given, the search 
space in the space-time-state network could be further reduced.   

   Table 8. CPU computation time and memory use under different number of activities 

# of activities Maximum numbers of activity 
performing states CPU time (seconds) RAM (GB) 

4 81 15.5 0.3 

5 243 38.2 1.3 

6 729 112.3 3.6 

7 2187 337.4 11.3 

4.4 Large-scale experiment within a simulation-based framework with simplified activity representation and road 
capacity constraints 

This section aims to present the initial test result of the simulation-based approach for system optimal dynamic 
vehicle routing under road capacity constraints. The Salt Lake City regional traffic network is selected and it has 
13,923 nodes, 26,768 links and 2,302 zones. The total number of simulated vehicles is about 1.35 million from 15:00 
to18:00. The traffic flow model chooses point queue model, which just considers the tight road capacity constraints. 
The details of implementing spatial queue model and Newell’s simplified kinematic wave model by simulation can 
be found in the paper (Zhou and Taylor, 2014). 

This experiment can be treated as a special version of Case A. Each origin zone is analogous to one household and 
those destination zones can be viewed as those mandatory activity locations. The process that vehicles depart from 
origin to destination is like that household members complete their mandatory activities with flexible time windows. 
The simulated average trip time index (mean trip simulated travel time/trip free-flow travel time) of 100 iterations is 
depicted in Fig. 13 and finally shows a convergence pattern. A parallel computing technique (Qu and Zhou, 2017) is 
embedded in the simulation process, and the search process for single activity is extremely simple compared to the 
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full scale space-time-state search presented in the medium-scale example. The computational time for one iteration is 
just 1 min 25sec in our workstation with 40 available CPU threads and 192G memory. As stated in the paper (Lu et 
al., 2016), this simulation algorithm still needs further improvements on path marginal travel time calculation and step 
size optimization of each iteration. 

 
Fig. 13 Average trip time index of each iteration 

5. Conclusion and future research  

By embedding a set of hard constraints into a well-structured (space-time and space-time-state) network structure, 
we reformulate two difficult cases in HAAP using a person-based or vehicle-based network flow programming model 
with very few side constraints, which could be directly solved by some standard optimization solvers, or directly 
further solved by time-dependent state-dependent shortest path algorithms. Meanwhile, the tight road capacity is 
highly considered for capturing the underlying congestion effect for the cases above. The numerical experiments 
demonstrate our proposed methodology and analyze the impacts of different activity benefits on the final vehicle 
routing and household member activity selection.  

It is important to further consider vehicle selection (mode choice) and ride-sharing simultaneously so that an 
optimal travel pattern, such as driving alone or ride-sharing, can be found for each household. Then the household 
optimal principle can be applied to the whole household system and finally reaches a dynamic household-level 
equilibrium. We are also currently conducting additional numerical experiments on large-scale networks with realistic 
household activity data to examine the sensitivity and possible improvements of the space-time-state routing 
algorithms.   
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full scale space-time-state search presented in the medium-scale example. The computational time for one iteration is 
just 1 min 25sec in our workstation with 40 available CPU threads and 192G memory. As stated in the paper (Lu et 
al., 2016), this simulation algorithm still needs further improvements on path marginal travel time calculation and step 
size optimization of each iteration. 

 
Fig. 13 Average trip time index of each iteration 

5. Conclusion and future research  

By embedding a set of hard constraints into a well-structured (space-time and space-time-state) network structure, 
we reformulate two difficult cases in HAAP using a person-based or vehicle-based network flow programming model 
with very few side constraints, which could be directly solved by some standard optimization solvers, or directly 
further solved by time-dependent state-dependent shortest path algorithms. Meanwhile, the tight road capacity is 
highly considered for capturing the underlying congestion effect for the cases above. The numerical experiments 
demonstrate our proposed methodology and analyze the impacts of different activity benefits on the final vehicle 
routing and household member activity selection.  

It is important to further consider vehicle selection (mode choice) and ride-sharing simultaneously so that an 
optimal travel pattern, such as driving alone or ride-sharing, can be found for each household. Then the household 
optimal principle can be applied to the whole household system and finally reaches a dynamic household-level 
equilibrium. We are also currently conducting additional numerical experiments on large-scale networks with realistic 
household activity data to examine the sensitivity and possible improvements of the space-time-state routing 
algorithms.   
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