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Introduction 
Climate change will be gradual but the severity and frequency of unprecedented extreme events, such as 

heat waves, intense storms, drought, and flood will be abrupt (World Health Organization 2008). The 

consequences of climate change for public health will be dramatic (World Health Organization 2008). 

Among the climate incited problems, heat persists as a major health hazard. The direct heat impact on 

public health includes the excess mortality attributed to heat (Kovats and Hajat 2008), multiorgan 

dysfunction on the human body, near-fatal heat stroke (Dematte et al. 1998), and increased hospitalization 

of heart disease during heat waves (Schwartz et al. 2004). Beyond these immediate impacts, heat waves 

and heat stress incited air pollution, wildfire, power and water failures have also caused public health 

problems or hinder public health action(Kovats and Hajat 2008; Solomon and LaRocque 2019). 

As climate change is expected to increase the frequency and intensity of the heat waves (Kovats and Hajat 

2008), public health authorities (i.e., CDC) and cities started to build resilience frameworks to help cities 

and residents to prepare the direct and indirect impact on human health from climate change (Manangan 

et al. 2019). Heat vulnerability assessment—which identify the spatial distribution and the health 

outcomes of heat stress—is commonly used in the resilience framework (Conlon et al. 2020; Manangan et 

al. 2019). Stake holders and health practitioners use the heat vulnerability assessment to understand the 

people and places that are susceptible to adverse heat impacts and to ‘implement protective interventions’ 

to increase people’s resilience (Manangan et al. 2019). Non-meteorological factors are important in heat 

related mortality and mobility (Putnam et al. 2018). 

The state-of-the-art in heat vulnerability analysis remains focused on associating negative heat health 

outcomes with the specific demographic group or the build-environment associated with places of 

residence. Sun (et al., 2021) proposed a human-centered framework to assess the tree shade provision and 

the environment with the social economic status to assess the heat-vulnerability for active travel at city 

scale. Langenheim (et al. 2020) uses an accessibility model to estimate the potential route to schools and 

use tree-scape model to estimate UV exposure of children walking home from school through these routes. 

Socioeconomic and demographic factors such as old age, racial and ethnic minority groups, low income 

and less than high school education, and living alone have been associated with the increasing mortality 

during heat waves (Hajat et al. 2005; Ostro et al. 2009; Schwartz 2005; Stafoggia et al. 2006). The build 

environment associated with the urban heat island effect—such as the percentage of impervious surfaces, 

tree canopy ratio, shading from buildings, and accessible green spaces—are used to identify the heat 

exposure across communities (Dadvand et al. 2016; Hass et al. 2016; Middel et al. 2014; Yeager et al. 

2018). The empirical study shows that the number of heat-related injury has a relationship with the 

mereological temperature.  The study also shows it’s more related to the age, activity type and location 

the heat victim was present, and the appearance of cooling infrastructure or equipment in the environment.  

While the location and demographic central heat exposure approaches are useful, they ignore the 

complexity of individual behavior, microclimate, infrastructure, and the effects on individual heat 

exposure. They all targeted a certain demographic group, or use census track data to indicate the 

vulnerability. Fewer studies have tracked down the travel pattern or individual trips . Humans can be 

exposed to heat directly from outdoor activities, or the indoor heat stress because of lacking cooling 

appliances. People can also be exposed to indirect infrastructure failures attributed to heat waves, such as 

AC unit dysfunction and water outage.  

Outdoor activities are highly related to the heat related mortality in a hot climate, but indoor environments 

without adequate cooling systems are also relevant to the heat related injuries in warm climates (Iverson 

et al. 2020). Such as lawn and garden care, recreational outdoor trips are the most common outdoor 

activities to contribute to heat exposure (Hoehne et al. 2018). Neither the current demographic group 

approach nor location-based heat exposure analysis can capture these intricate person-based heat 

exposures. In Maricopa County, most heat-related injuries occur outdoors. Among the indoor heat related 
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mortality cases, more than 82% was directly related to an inadequately cooled environment (Iverson et al. 

2020). Senior population may be more vulnerable to heat because of  certain health conditions, but they 

also tend to be more adaptive by shifting travel time to cooler hours in a day, reducing outdoor trips, or 

shortening the outdoor travel time. Meanwhile, according to Iverson, from the historical record in 

Maricopa County, people over 49 years old tend to have more heat-related injuries indoors.  

Mesoscale traffic models provide a potential to study the spatial and temporal pattern of residents’ and 

travelers’ heat exposure. Activity-based model (ABM) describes the active trips and location for activities 

together with the demographic feature carrying out these trips and activities. Understanding the active trip 

route, time, duration, and the environmental temperature these trips were exposed to give us insight into 

travelers’ heat exposure. Together with the parcel AC availability survey result, the trip and activity heat 

exposure for each transportation agent could be estimated and provide insights for heat exposure for 

travelers. 

To address the dearth of knowledge about person-based and trip-level exposure, we developed the Icarus 

model. Icarus uses mesoscale traffic model—activity-based model—to analyze the heat exposure of 

regions of interest at an individual level. The goal with Icarus was to design accurate, granular models of 

population and temperature behavior for a target region, which could be transformed into a heat exposure 

model by means of simulation and spatial-temporal joining. By combining and implementing the most 

robust software and data available, Icarus was able to capture person-based exposure with unparalleled 

detail. Here we describe the model methodology. We use the metropolitan region of Phoenix, Arizona, 

USA to carry out a case study using Icarus. 
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Method  
Icarus is a simulation platform for analyzing people’s transportation heat exposure. It simulates the agent 

heat exposure in the following steps. First, Icarus requires users to prepare an activity-based model (ABM) 

data, study region parcel map, infrastructure network, and the temperature data prior to the simulation. 

Secondly, Icarus creates synthetic agents and their trip schedule, prepares the roadway network data, and 

parses the temperature profile to the roadway network and the parcel map. Then, Icarus simulates each 

agent’s travel routes in the roadway network. In the last step, Icarus uses the geo-spatial location and the 

time stamp for trips and activities simulated, together with the parsed temperature profile in the previous 

step, to estimate the heat exposure for trips and agents. Through these steps, Icarus processes the input 

data and generates the heat exposure for each simulated agent. Figure 1 illustrates the core processes of 

Icarus and the resources in which it interacts. Currently, Icarus is a python module.  

 

Figure 1: Icarus Framework 

Data collection 

Prior to simulation, users need to collect a set of data to be input into Icarus. Data required for Icarus 

simulation include the ABM data and the parcel data, temperature profile with the time series, and 

transportation network. To streamline the process, the data required by Icarus can be retrieved or obtained 

from the public open-source database (i.e., OpenStreetMap, or the NOAA), or requested from the local 

government and research institutions (i.e., the ABM, the parcel data). Here, we explain the data required 

in Icarus in detail to guide the users’ understanding and extrapolating the data in the future when using 

Icarus.  

Activity Based Model and Parcel data 
The Activity Based Model (ABM) contains the synthetic population. In the generation of the ABM 

dataset, a population is defined as a set of agents with various demographics that define their needs (i.e., 

work, groceries, etc.) and resources (i.e., vehicles, time, etc.). In addition, the generation of ABM 

households and agents make decisions to take certain tours to maximize the achievement of their needs 

with their given resources. In the ABM, the locations of each household and the activities are given at the 

Micro Analysis Zones (MAZ) level. The ABM data is usually synthesized from the travel survey and 

provided by the city or regional planning agencies. Differences of the ABM depends on the ABM 

providers, but in general, ABM data contains agent, household, and trips’ information. Agents’ 
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information includes the demographic of the agent, such as the education, age, gender, job type, etc. Trips’ 

information includes each trip's origin, destination, travel mode, travel time, duration, the purpose of the 

trip, how long the activity after the trip would last, and the person (i.e. agent) who carried out the trip. 

The parcel map was required by Icarus so that locations described in the ABM could be pinned down into 

parcels in a MAZ. There are tens to hundreds of parcels in one MAZ. The parcel data could be obtained 

from the local treasury department. Since parcel data is often used for census and taxation purposes, it is 

accessible and accurate for a given target location. By analyzing region bounds and parcel use codes, 

activities can be intelligently assigned parcels—and hence exact locations—from their region codes and 

activity types.  

Roadway network data 
The transportation infrastructure network is used for the synthetic agents to traverse. Icarus introduces the 

roadway network from OpenStreetMap (OSM 2019). Users need to download the OSM data in the study 

region into the simulation environment prior to the simulation. Since the OSM website doesn’t support 

large scale network downloads, we recommend using BBBike (Schneider 2021) to download the OSM 

data. The downloaded network should have both walking and biking networks, as well as the car driving 

network presented. The roadway network will be cleaned up in Icarus before it is used for the simulation.   

Temperature data 
The outdoor temperature profile used in Icarus can be Daymet (Thornton et al. 2016), measured city 

temperature, or the estimated mean radiant temperature (MRT), as long as the temperature data covers the 

analysis region and can be extrapolated into different time sequences. Daymet data  uses satellite infra-red 

temperature measurements to represent the surface temperature for every 100-square meters  (Thornton et 

al. 2016). The observation time is 24-hours, with a 1-hr gap for each time of revisit. The Mean Radiant 

Temperature (MRT) measures the human body experiencing temperature by considering the 

environmental radiance. While MRT data has higher resolution (i.e., 15 to 30 meters resolution) and more 

granular temperature profile (i.e., every 15 minutes), it usually is generated by research institutes and are 

not universally available. The indoor temperature is derived from the indoor temperature assessment for 

each parcel. Whether to choose Daymet or MRT data is purely based on the objective from Icarus users.  

Data preparation 

The data obtained from various sources needs to be parsed and joined into an unite dataset. First, Icarus 

creates synthetic agents’ sample from ABM. Each agent has a set of coherent activities and trips that the 

total duration would add be up to 27 hours of the simulation day (Figure 2). Trips are the movement that 

an agent transferred from one activity to another activity. Activities locations, such as home, school, 

lunch, or work, are the origin or destination of the trips connecting two activities. The location of the 

activities is assigned as the centroid of the parcels which were randomly selected in the activities’ MAZ. 

The indoor temperature was assigned to the activity locations based on the stochastic parcel selection and 

the indoor temperature assessment for each parcel.   

The network needs to be cleaned up and parsed with the temperature profile. Network data obtained from 

OSM are likely to have topological errors such as overshooting edges, or intersecting edges without node 

where a turn should be possible. Icarus uses python module GTFS2GMNS (ASU trans AI lab 2020) to 

clean up these topological errors and filter out the walking and biking infrastructures in the network. The 

cleaned-up transportation network is then overlayed with the outdoor temperature profile to get the 

geolocations ID which will be used to source the temperature in the exposure calculation process.    
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Figure 2: Agent's one day routine layout 

Outdoor temperature profile needs to be extrapolated into finer time steps to accommodate the exposure 

calculation. For example, Daymet provides the average maximum and minimum temperature for a 24-

hour period during the month. Icarus extrapolates the Daymet temperature into a 15-minutes time step 

temperature profile. To do so, Icarus assumes the temperature changes linearly between maximum and 

minimum temperature. It is also assumed the minimal temperature (𝑇𝑚𝑖𝑛) happens at the time of sunrise 

(i.e., 𝑡𝑑𝑎𝑤𝑛) and the temperature reaches maximum temperature (𝑇𝑚𝑎𝑥) at noon (i.e., 𝑡𝑝𝑒𝑎𝑘). For a given 

time in a day (𝑡), the temperature is estimated as equation (1): 
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 (1) 

If the outdoor temperature profile already has a fine time step, such as MRT temperature has a 15 minutes 

interval, Icarus will skip the temperature extrapolating process. 

Routing and heat exposure analysis 

Icarus uses agent, trip, and the cleaned-up network data to route the trips. In vehicle trips, such as car 

driving or taking public transit, are not routed but teleported between the origin and destination. Icarus 

routes the walking and biking trips using the Dijkstra shortest path algorithm. The routed trips would 

export a set of links (Ω) on their shortest path. Each link also gets a time stamp (𝑡) to tag the initial time 

when an agent was simulated to cross the link.  

Exposure analysis takes the result of routing, and the temperature profile generated to calculate the 

amount of minutes*degrees exposure each agent experiences in every environment they interact with. An 

agent one day heat exposure includes the exposure from both trips and activities. The trips’ exposure 

calculates the minutes*degrees an agent exposed to when traveling from origin activity to the destination. 

For the teleported in-vehicle trips, the exposure is calculated as the product of the trip’s duration given in 

the ABM and a constant 26.6 degrees air-conditioned temperature. For the routed active trips, the 

exposure is calculated as incrementing the degree*minutes an agent is exposed on the trips, which is 

calculated by multiplying the time agents spend on the trip, and the temperature this agent is exposed to in 

the environment at the time when the trip or activity happens in equation (2): 
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𝐸𝑡𝑟𝑖𝑝 =∑(𝑡𝑖+1 − 𝑡𝑖) × 𝑇(𝑡𝑖)

𝑖∈Ω

 (2) 

where Ω is a set of the sequenced links an active trip routed through. 𝑡𝑖 is the time stamp when an agent 

was simulated to cross the link 𝑖. 𝑇(𝑡𝑖) is the outdoor temperature at link 𝑖 and time 𝑡𝑖, which is calculated 

from equation (1). 

To estimate the activities’ exposure, land usage codes for parcels were used to predict whether activities 

would be outdoor, indoor with air condition, or indoor without air condition. When an activity location is 

indicated to have AC presents, the activity exposure is calculated as the product of activity’s duration and 

a constant room temperature at 26.6 degrees. If there is no AC at the activity’s location or if the activity is 

outdoor, Icarus calculates the exposure as equation (3): 

𝐸𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = (𝑡𝑒𝑛𝑑 − 𝑡𝑠𝑡𝑎𝑟𝑡) × 𝑇(
𝑡𝑒𝑛𝑑 + 𝑡𝑠𝑡𝑎𝑟𝑡

2
) (3) 

where 𝑡𝑠𝑡𝑎𝑟𝑡 and 𝑡𝑒𝑛𝑑 are the start and end time of an activity.  

Each agent total heat exposure during the 27 hours simulation time is calculated as equation (4): 

𝐸𝑎𝑔𝑒𝑛𝑡 = ∑𝐸𝑗
𝑗∈Ψ

 (4) 

where Ψ is the set of coherent activities and trips that an agent planned for the simulation.  

Case study  
We implemented Icarus for the City of Phoenix in the Maricopa County, US as a case study. Maricopa 

County is located in the arid Sonoran Desert. Between 2006 to 2016, Maricopa County had a mean of 140 

days with daily maximum temperature above 90 oF (32 oC), and an average of 57 days with daily 

maximum temperature exceed 105 oF (40.5 oC) (Iverson et al. 2020). Despite the arid and warm weather, 

Phoenix has been one of the fastest-growing cities in the country since the 1950’s (Chow et al. 2012). To 

monitor the heat stress in Phoenix, researches initiative regarding to the temperature at a finer resolution 

provide rich temperature profile to be used in Icarus. Meanwhile, the Maricopa Association of 

Governments (MAG) developed the Phoenix ABM to model synthetic population’s travel behavior 

(Vovsha et al. 2011). The abundance of temperature profile and the available of complete ABM data 

makes Phoenix a perfect city to carry out Icarus case study. The case study focuses on Phoenix but the 

whole Maricopa County is included in the analysis since a lot of the commute trips are between Phoenix 

and the neighboring cities in the County.  

The Phoenix case study is carried out using the regional ABM, network, and temperature data with certain 

assumptions. The synthetic population for Maricopa County is generated from MAG 2018 ABM data. 

There are 14 different travel modes in ABM shown in Table 1 bin 2. Icarus simplified the 14 travel modes 

in ABM into car driving, public transit, walking, and biking trips. The 14 travel modes were grouped into 

four categories based as shown in Table 1. Travel modes for each trip will determine the routing and the 

exposure analysis method. All walking and biking trips occur outdoor, and the in-vehicle trips are 

assumed under the room temperature. For the shared trips, we process joint trips together and assign the 

same start and end parcel to agents who have the sharing trips. We obtained the Maricopa county roadway 

network from OpenStreetMap (OSM 2019). To present the typical hot weather in Phoenix, we select the 

temperature profile from the hot summer day. And to compare the sensitivity of heat exposure estimation 

to temperature profiles, we selected temperature profiles from two different measurement techniques—

Daymet and Mean Radiant Temperature. Daymet temperature uses satellite infra-red temperature to 

represent the surface temperature for every 100-meters surface area (Thornton et al. 2016). The 

observation time is 24-hours, with daily minimum and maximum temperature. We also chose Mean 

Radiant Temperature (MRT) in Phoenix to estimate the body temperature heat exposure (Zhang et al. 
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2019). Derived from Google Street View, MRT considers environmental radiance—such as shading, land 

surface type—and their effects on the people’s body temperature (Zhang et al. 2019). MRT has a 15 

minutes time step and the resolution is between 10 to 30 meters. The MRT data is only available between 

sunrise to sunset. The temperature before the sunrise and after sunset is assumed to be the same between 

Daymet and MRT. Although MRT data has higher time and spatial resolution than Daymet, it is limited 

to the transportation networks where Google Street View is present. 

Table 1: transportation modes in Icarus and ABM 

Icarus Mode ABM Modes Routing 

Car driving SOV, HOV2/driver, HOV3+/driver, 

HOV/passenger, taxi 

Teleported 

Public transit Conventional transit walk access, 

Conventional transit KNR, Conventional 

transit PNR, Premium transit walk 

access, Premium transit KNR, Premium 

transit PNR, School bus 

Teleported 

Walking walk Shortest distance 

Biking bike Shortest distance 

 

We further analysis the travelers’ heat exposure and vulnerability using the result exported from Icarus. 

People’s heat stress is related to the environmental temperature they are exposed to, the time they spend 

in that environment, if they are doing physical activities, and if they are used to the heat environment. For 

instance, Iverson et al. (2020) found Non-Arizona residents are 5 times more likely to experience heat-

related death outdoors than Arizona residents. We adapted the wet bulb globe temperature work/rest chart 

(Mesonet 2016) to select a set of temperature-duration thresholds for active trips that were carried out by 

acclimated travelers (Table 2). The walking and biking are classified as moderate and heavy work 

according to their metabolic equivalent of task (MET) level assessed Tudor-locke et al.(National Cancer 

Institute 2020; Tudor-Locke et al. 2009). These thresholds were used to distinguish the high heat 

exposure trips, and to identify the vulnerable demographic groups that carried out these trips. 

Table 2. Vulnerable trip's thresholds 

heat exposure 

risk level 
WBGT (Fo) WBGT (Co) 

trip duration (minutes) 

walking 

(moderate work) 

biking 

(heavy work) 

no risk 78-79.9 25.5-25.9 continuous 50 

low 80-84.9 26-28.9 50 40 

moderate 85-87.9 29-30.9 40 30 

high 88-90 31-31.9 30 20 

extreme >90 >32 20 10 

 

Results  
Icarus generates the trip planned for each agent during the 27 hours simulation time, including the routes 

agent chose for each trip, and the activities they did at the end of the trip. Icarus also generated the heat 

exposure for each agent on the trip. These data can be linked to the demographic database comes with the 

original ABM data, to group, and analysis the demographic features of the heat vulnerable groups. 
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Together with the GIS information for trips, activities, and the corridor environmental properties, we 

could target the locations where high heat exposure happens. The results of Icarus are presented as the 

simulation, the exposure estimation, and the vulnerable trips. 

Simulation results 

From the MAG ABM data, the majority of the population only use vehicle in their daily travel plan. In 

total, 3.8 million agents were extracted from the ABM data, and 18.6 million trips were simulated. 11 

agents were dropped because we couldn’t generate their 27 hours travel plan. Among the 3.8 million 

agents, 13.1% agents have at least one biking or walking trip in their daily travel plan, while the rest 

agents (86.9%) only have in vehicles trips. Less than 0.7% of the total sample population have only 

walking or biking trips in their plan. 12.4% of the agents have both in vehicle and active travel mode. The 

average walking trips’ distance is 1.54 kilometers, and the average biking trips’ distance is 2.72 

kilometers. Since there is lack of survey data to validate the actual path each agent took, we briefly 

compare the travel speed of the walking and biking trips generated from Icarus with the average active 

speed.  

All age groups in the population use active trips only in their daily travel plan, higher ratio of young and 

senior population uses active only trips in their daily travel plan. The synthesized population have three 

kinds of travel plan in the 27 hours simulation time: 1) the agents only travel in car or buses; 2) agents 

travel in vehicles but also have biking or walking trips in their daily plan; 3) agents only travel by walking 

and biking. Although the majority (86.9%) of the population chose to stay in vehicle to finish their daily 

trips, the rest (13.1%) who chose to have at least one active trip in their travel plan shows strong 

correlation with the populations’ age. High percentage of people above 65 years old and people under 20 

years old in the ABM are using walking and biking as their only travel mode (Figure 3). The population 

between age 35 to 45 have the ratio of active only trips in their daily plan. The daily trip mode 

arrangement signaled the potential heat vulnerable demographic group. The younger and senior 

population are more vulnerable to heat exposure because of their health conditions or lack of access to 

vehicles (find a citation). But since they are more vulnerable, they also adopt to resilience strategies to 

avoid outdoor trips during the hottest hours.  

 

Figure 3: age groups for different travel patterns 

One way to see populations adaptation to heat exposure is to check the active trips start time between 

different age groups (Figure 4). Although population under 20 have higher ratio of active only trips, the 

time they carry out these trips are either in the early morning or late in the afternoon. They avoid the trips 

at the hottest time of the day (i.e., 12 PM to 2 PM). Population ages between 19 and 53 simulated to carry 
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out half of the total trips in the system. Under 12% of the population between age 20 to 60 chose to at 

least one active trip in their daily travel plan (Figure 3). Population aging between 20 to 60 have their 

peak time for active trips is between 12 PM to 2 PM—the hottest time during the summer day in Phoenix. 

Checking the ABM data, the purpose of trips during the peak time was related to lunch break. People ages 

above 61 year have majority of their active trips happening between 8 am to 14 pm. They could be 

vulnerable to the summer heat during the middle of the day as well.  

Table 3. Simulation Statistic 

  

Number of 

trips  

% of total 

trips 

Trip duration 

(min) 

mean (5% ,95%) 

Trip distance 

(km) 

mean (5% ,95%) 

Travel speed 

(KPH) 

mean (5% ,95%) 

walking 1,030,014 5.55% 
5.75  

(1.30, 14.04) 

1.54 

(0.22, 3.58) 

7.1 

(1.42, 17.3) 

biking 147,142 0.79% 
8.7 

 (2.1, 21.3) 

2.72 

(0.5, 7.23) 

19.7 

(9.1, 48.0) 

Car 

driving 
17,245,967 92.89% 

9.13  

(1.2, 34.15) 
N/A N/A 

Public 

Transit 
142,869 0.77% 

74.8  

(20.48, 142.05) 
N/A N/A 

 

 

Figure 4: trip duration and validation with ABM 

Exposure Estimation results 

The exposure analysis estimated heat exposure under both Daymet and MRT profile for the population 

that finished travel simulation. The temperature profile choice does not affect the heat exposure of in-

vehicle trips. Because we assumed all vehicles provide a constant 26.6 oC temperature for passengers and 

drivers. Contrary to in-vehicle trips, heat exposure of walking and biking trips is very sensitive to the 

choice of temperature profiles. All simulated walking and biking trips have DayMET heat exposure. But 

since MRT data does not cover the full studied area, only a portion of the active trips have their MRT heat 

exposure results.  
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Agents exposure is the aggregation of the exposure from trips and activities in each agent 27 hours travel 

plan. In the current simulation, all activities exposure is assumed to be under 26.6 oC environmental 

temperature. The heat exposure calculated from MRT profile has a wider range than the exposure 

calculated from DayMET profile. The population which finished the simulation in Icarus would all have 

their Daymet heat exposure estimation. But only 72% of the agent who have at least one walking and 

biking trips in their daily travel plan would have their MRT heat exposure estimation results. The 

population who have their trips all in-vehicles would have their total heat exposure equals to 720 
oC*hours, since the activities and the trips temperature are set to be 26.6 oC thought the 27 hours. Agents 

with active walking and biking trips are expected to have different than 720 oC*hours heat exposure, 

especially for those 0.67% agents who travel only by walking and biking (Figure 5).  

Populations—who have only walking and biking trips in their daily plan—have their daily heat exposure 

ranges from 719 degrees*hours to 817 degrees*hours. The lower exposures value is resulted from the 

outdoor active trips in the early morning or late afternoon, where the air temperature is lower than the 

indoor and in vehicle temperature. The selection of temperature profile would affect the heat exposure 

results. MRT exposure results demonstrate a wider range of heat exposure, but some locations don't have 

MRT available. While MRT temperature profile has more details, it doesn’t cover the whole study area. 

On the other hand, Daymet data has full coverage, but missing the resolution to show detailed temperature 

difference in small scale. On average, heat exposure calculated with MRT temperature profile is higher 

than the heat exposure calculated with Daymet temperature profile (Figure 5). Compared to the ABM 

agents, 29% of the active trips only agents and 27% of the mixed in vehicle and active trips agents were 

missing from MRT exposure results. This is because the MRT profile doesn’t cover the whole study 

region. It’s difficult to stipulate a threshold for high exposure agents.  

 

Figure 5: Agent heat exposure in 27 hours 
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Vulnerable trips 

We use the selected work intensity and duration threshold to filter out all the vulnerable walking and 

biking trips. As plotted below, the number of walking and biking trips carried out by different age is 

plotted as below. In ABM data, people under age five and over age 65 have the relatively lower number 

of active trips comparing to other age group. But for agents age below five, on average, 29% of their 

active trips are classified as heat vulnerable trip based on the threshold we selected. Meanwhile, for 

population over 65 years old, less than 1% of their walking and biking trips are above the heat 

vulnerability threshold we selected (Figure 6). Reasons for these contrasts could be that for toddles under 

age 5 don’t carry out walking and biking trips by themselves rather than escort by teenagers or adults. 

These escorted trips could be carried out during the hot hour in the high heat environment or have longer 

duration. While for seniors, their walking and biking trips tend to be short duration, even though they 

carried out active trip during the hottest hour of the day, their trips are not captured by the threshold we 

selected. For the population aging between six to 64, around 20% of their walking and biking trips are 

above the defined heat vulnerable threshold.  
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Figure 6. Total Active Trips' Histogram and Ratio of Heat Vulnerable Trips between Age Group 

We filtered out the links in the City of Phoenix municipal region and calculated the link flow for all active 

trips as well as the most vulnerable trips on each arc (Figure 7). Links used by most active trips are not all 

used by vulnerable trips. In the city of Phoenix region, the busiest link in the network is simulated to up to 

over 3000 trips per day. Arc in the network that traveled most by active trips are around shopping malls, 

business centers, city parks, and medical centers (e.g., Carl T Hayden Veterans Affairs Medical Center, 

Banner Estrella Medical Center). Links used over 2000 times in the simulation day clusters near the west 

side of highway north 101 and I 17 intersections at the Deer Valley, downtown Phoenix, where shopping 

mall with retail and dinning are concentrated. Link flow counted by vulnerable trips at maximum is 1500 

trips per link per day. The arcs where the number of vulnerable trips is high, are not always at the high 

link flow location. These links have high vulnerable link flow is either because, these links have high 

environmental temperature that cause the trips with high temperature exposure, or trips using these links 

take place during the hottest hours of the day, or the trips using these links have longer duration.  
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a.  Link Flow of All Active Trips 

 

b. Link Flow of the Vulnerable Trips 

Link 

Flow 

(count) 

 

Figure 7. Link Flow Map of All Active Trips vs. Heat Vulnerable Trips 

Discussion : 
As global warming is adding uncertainty to the reliability to our infrastructures and cities, a low or even 

zero emission scenario is believed to be the key for us to slow down the pace of global warming. Climate 

and environmental change may alter people’s behavior patterns. When it is too hot to do outdoor 

activities--to garden, or for a walk--people shift their travel schedule to avoid excessive heat exposure 

(Zivin and Neidell 2010), or forgo physical activity entirely (Obradovich and Fowler 2017). Considering 

the climate change induced temperature rise, physical activities may decline during the summer in 

southern states (Obradovich and Fowler 2017). The appearance of heat mitigation infrastructures—such 

as shaded corridors, community buses, or cooling centers—could also influence individual’s travel 

behavior. This could potentially decrease individuals heat exposure, since the outdoor activities are either 

shifted to cooler hours or forgo. The rising heat could also significantly increase individual vulnerability 

if one could neither shift travel plans nor find cooling shelters on the trip. Comparing to in vehicle trips, 

walking and biking trips don’t consume fossil fuel or electricity and emit nearly none GHG emission. 

Active trips are also good for citizen’s health. The COVID-19 pandemic also accelerates residents’ 

increasing demand for street network to do walking and biking other than just workout in the gym. But 

the traditional car centered transportation planning and roadway design leaves little consideration for the 

mesoscale walking and biking environment. Icarus provides a detailed analysis of active trips location and 

heat exposure for different demographic groups based on the ABM, temperature, and network data. The 

outputs of Icarus include the link flow for walking and biking trips in the network, heat exposure for each 

trip simulated in the network, accumulated agent exposure, and so on. The findings from Icarus can assist 

transportation planners to identify the heat vulnerable trips and potential locations for heat exposure 

mitigation planning. Based on people’s adaptivity in different climate regions, users of Icarus can also 
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adjust the duration and temperature thresholds to filter out the vulnerable population and trips from Icarus 

output.  

Limitation 
The limitations of the Icarus come from the internal simplification to stream flow the simulation, and 

external data quality added on uncertainty. Internally, Icarus doesn’t consider the heat exposure for public 

transit trips in the current version. Icarus also doesn’t have the capacity to analysis the schedule shifts 

caused by the environmental change from the infrastructure improvement, such as increasing the biking 

lane or tree shading in a corridor may induce some car driving agents shift to walking and biking. Also, 

shortest path is not always depicting how people choosing their walking and biking route. 

Externally, ABM, temperature profile, and the transportation network data quality would affect Icarus 

simulation result. For instance, the ABM used in the case study tends to be calibrated for one day with 

“peak travel” which likely occurs in February or March, outside of the warm season. Our estimation has 

the potential to overestimate the number of vulnerable trips, since some of the trips may cancelled (i.e., 

schools have summer break) or shift time (i.e., construction sites shift operation hours) during the warm 

season. The temperature profile would also affect the analysis result accuracy, as showed from the agent 

heat exposure result. The transportation network may over simplified or not having the walking and 

biking infrastructures presented.  

Despite these limitations, Icarus still provides a module for insights into travelers’ heat exposure, and 

provide quantitative method for planners to address and reduce the travelers heat exposure.  
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