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Abstract
Human team members show a remarkable ability to infer the
state of their partners and anticipate their needs and actions.
Prior research demonstrates that an artificial system can
make some predictions accurately concerning artificial
agents. This study investigated whether an artificial system
could generate a robust Theory of Mind of human
teammates. An urban search and rescue (USAR) task
environment was developed to elicit human teamwork and
evaluate inference and prediction about team members by
software agents and humans. The task varied team
members’ roles and skills, types of task synchronization and
interdependence, task risk and reward, completeness of
mission planning, and information asymmetry. The task was
implemented in MinecraftTM and applied in a study of 64
teams, each with three remotely distributed members. An
evaluation of six Artificial Social Intelligences (ASI) and
several human observers addressed the accuracy with which
each predicted team performance, inferred experimentally
manipulated knowledge of team members, and predicted
member actions. All agents performed above chance;
humans slightly outperformed ASI agents on some tasks and
significantly outperformed ASI agents on others; no one
ASI agent reliably outperformed the others; and the
accuracy of ASI agents and human observers improved
rapidly though modestly during the brief trials.

Introduction1

Teams succeed through coordinated actions by members
who differ in their capabilities and roles. Teams achieve
this coordination using domain-specific, often
mission-specific, compositions of training, talk,
technology, and Theory of Mind (ToM; Baron-Cohen,
Leslie, and Frith 1985; Premack and Woodruff 1978). The
first three techniques help team members manage the scope
of the fourth, ToM, which enables team members to infer

1Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the capabilities and goals of teammates, predict their
actions, and coordinate or compensate to improve
teamwork.

Training—by which we mean education, planning,
rehearsal, and repeated mission execution—demonstrably
develops members’ ability to predict the responses of
colleagues to challenges, coordinate actions, and improve
performance (McNeese et al. 2015; Yurko et al. 2020).
Such preparation is essential over all missions but typically
inadequate for any given mission because training cannot
perfectly anticipate a specific mission (nor should it if it is
to ensure generalizability of learning across potential
variants of the mission).

To compensate for the inadequacy of training, teams
communicate in real time using spoken language (e.g.,
military air control communications protocols) and
symbolic language (e.g., the marking conventions used by
search and rescue teams). These communication protocols
range from the formal to the informal. They convey among
team members much of what any member knows, needs, or
intends at the moment. However, communications are
often inaccurate, incomplete, untimely, or unavailable (e.g.,
in military operations).

Technologies designed to improve team coordination can
compensate for the inevitable inadequacies of training and
talk. MacMillan et al. (2002) describe applications of
multi-objective optimization, simulation, and empirical
research to design teams that are better sized and
synchronized, and thus outperform standard teams in
empirical and computational studies. The rich literatures of
operations research and robotics describe techniques for
making plans more efficient, robust, or resilient, and
planning more rapidly (c.f., Kitano et al., 1997). Real-time
social network analysis and related techniques have been
used to help military commanders assess and improve



teamwork in their organizations in near real time (Brown et
al. 2017). In many military operations, sophisticated
technologies represent the state of a mission on displays
and recommend or enact responses to threats, thus
automating what would otherwise require human
coordination (c.f., Aegis doctrine for automatically
executing tactical actions defined by policy). Such
technologies are, however, not available in all domains at
all times, nor competent or trusted by their users in all
situations.

Through training, talk, and technology, team members
scope, develop, and maintain mental models of their
teammates, or Theory of Mind (ToM). They use these
models when training, talk, and technology are insufficient
to coordinate with team members. More specifically, ToM
enables team members to infer the cognitive and affective
state of teammates, their goals, and their needs; to predict
teammates’ actions; and to develop guidance and actions
that coordinate work. Such inference is ineluctable,
difficult, and errorful.

Recent research explores whether we can develop a
Machine Theory of Mind (MToM) to offload from humans
some of the burden of developing, validating, maintaining,
and applying ToM of teammates. Rabinowitz et al. (2018)
demonstrated that meta-learning could be used by an
artificial system to make accurate inferences and
predictions concerning artificial agents. Such work, if
extended to model multiple human team members, might
be called Artificial Social Intelligence (ASI) or Machine
Theory of Teams (MToT). ASI could potentially generate
advice that improves teams in the most difficult of
circumstances, those in which team members are highly
varied in their capabilities and capacity, task
synchronization is complex, there is risk of failure at high
stakes, preparation and information are incomplete,
communication is encumbered, and thus the necessity and
difficulty of building ToM is high.

Research to develop ASI requires collaboration between
computer scientists and social scientists. DARPA sponsors
this research in a program called Artificial Social
Intelligence for Successful Teams (ASIST). ASIST
engages six teams in the development of ASI; six teams in
social science research intended to improve ASI inference,
prediction, and intervention; and one team (our own) that is
focused on experimental design, testbed development, and
evaluation. Below, we briefly describe the design of the
most recent study to advance ASIST (see Huang et al. 2021
for details) and the initial findings from evaluation of the
accuracy of MToM applied to human teams.2

2 We are agnostic to the genesis of ToM in humans, whether it be an
innate capability to apply theory (the "theory theory" account of Gopnik,
1992) or mental simulation (Gordon, 1986) to infer and predict. Training,
talking, and technology, discussed above, are data sources for both

Method

Experiment Design and Task Environment
Development and evaluation of ASI require a team task
that systematically demands and complicates the
generation of ToM. The domain of Urban Search and
Rescue (USAR) instantiates many of the attributes of such
a team task (enumerated above and in Table 1).

Team Attri-
butes

USAR Features Minecraft ASIST
Task Features

Skills &
roles

USAR requires
heterogeneous
teams (different
roles); individual
and team tasks

Three team members
and three possible
roles; individual and
team tasks

Task
synchronizati
on

Temporal
constraints with
asynchronous,
sequential, and
simultaneous
tasks

15 min missions to
rescue victims in tasks
requiring
asynchronous,
sequential, and
simultaneous
teamwork

Risk Hazards,
unexpected
events for
workers

Hidden freeze plate in
rooms

Reward Some victims
more severe,
triage necessary

Critical victims vs.
regular victims (high
vs. low reward)

Preparation Planning is
important

Planning session was
manipulated 

Information Incomplete
information on
victim and
blockage
location

Maps are incomplete

Communicat
ion

Verbal comms &
searched areas
marked to
communicate
with team

Audio & marker
blocks for comms
(Divergent marker
keys create conflicting
mental models)

Table 1: Comparison of teamwork features in USAR and a
Minecraft USAR simulation.

mechanisms, whether building theory from empirical data, or specifying
input conditions and operating rules for simulation. The genesis of human
ToM may be an inspiration for the design of MToM, but it is not a
constraint assessment of accuracy, which is our current focus.



A USAR task environment was built using Minecraft,
which provides a lightweight method to simulate the task
constraints that a typical USAR team might encounter
(Corral et al. in press; Lematta et al. 2019). A study was
designed in which teams of three were tasked with finding
and rescuing victims of two types, regular and critical, in
15-min missions. Each team member could choose from
three roles (a searcher—finding and relocating victims, a
medic—treat victims, and an engineer—removing rubble).
Task costs and rewards varied: regular victims could be
rescued by a single medic in 7.5 seconds for 10 points
each; critical victims required three team members to join
together to “wake” the victim from a coma, after which a
medic could rescue the victim in 15 seconds for 50 points
each. A few threat rooms had hidden freeze plates that
could immobilize any team member who enters the room
and require rescue by a medic teammate. Each of 64 teams
of remotely distributed members executed two different
missions in the same virtual building but with different
victim and rubble layouts. Mission order was
counterbalanced between teams.

To control the degree to which the team shared a model
of roles, goals, and strategy at the start of missions, we
manipulated the opportunity to plan together. 32 teams in a
planning condition were given three minutes to develop a
plan for approaching the task before the second trial. 32
teams in a control condition performed math problems for
three minutes instead.

Figure 1: An example map depicts building structure and, in two
white areas, victims and rubble. Maps for two other players reveal

victims and rubble in the left bottom and central bottom, and in
the central top and bottom top.

To control the distribution of starting knowledge over
team members, we provided maps that displayed one
building section to all members, a unique section to each
member, and hid sections from all members (see Figure 1).
The maps accurately showed locations of fallen rubble and
victims.

To control the agreement of knowledge between team
members, we provided conflicting definitions (or legends)
for three marker blocks carried by all members to lay as
signals to others; the colors of marker blocks designate the
ownership (e.g., participant “Red” lays red marker blocks),
but the symbols (1, 2, and 3) on marker blocks are the
same between team members. Two members received a
legend in which the marker block labelled 1 meant “no
victim here”, marker block 2 meant “regular victim here”.
One member received the same marker blocks, but the
definitions were reversed in the legend (see Figure 2). All
members received a marker block 3 defined as “critical
victim here.” This conflict in marker block meaning
enabled us to apply a variant of the “Sally-Anne” test of
Theory of Mind, in which the ASI must infer whether one
member will enter a room given potentially false beliefs
about the meaning of another’s marker block (Rabinowitz
et al. 2018; Wimmer and Perner 1983). Maps and marker
block legends were displayed during each trial, to help
participants form and execute search and rescue strategies
(see Figure 3).

Figure 2: A marker block legend with “reversed” meaning.

Figure 3: Participant interface displays the information map (top
left), marker block legend (bottom left), and Minecraft (right).

In sum, we created a between-within group mixed
experimental design. The between-group factor was
planning (with or without) before the second trial. The
within-group factor was two missions of equivalent
difficulty in terms of victim and rubble layout. At the
individual level, we also manipulated the three versions of
information maps for different known regions, and two



versions of marker block legends. Individual tasks and
interdependent tasks were designed to allow us to study
and ASI to model individual taskwork, two-member
coordination (in response to threat rooms), three-member
coordination (to rescue critical victims), as well as
individual and team navigation and rescue strategies.

Participants
201 participants (67 teams) were recruited from Reddit,
Discord, and University listserv with the requirement of
playing Minecraft, living in the United States, speaking
English, and having a normal color vision. Three teams’
data were omitted due to flaws in displaying the
information map and marker blocks). The remaining 64
teams (192 participants) consisted of 141 males, 49
females, and 2 individuals who declared other gender
identities or preferred not to respond. The mean age of
participants was 22.04 (SD=5.22, ranging from 18 to 49).
The most common ethnicities were white/Caucasian
(54.2%; 104), Asian (25.8%; 49), and Hispanic or Latino
(13%; 25). All participants had at least a high school level
education.

Procedure
The remotely conducted two-session experiment lasted for
3.5 hours. In Session 1 (one hour), participants checked in
to install the required software (e.g., Minecraft, Forge
mods, and Zoom™) correctly and then finished
pre-dispositional surveys. In Session 2 (which ran two and
a half hours), three qualified participants were required to
join as a team to go through a voice-over training video, a
hands-on practice of required individual actions and team
interactions in the MinecraftTM world, an independent
action-based Minecraft competency test, and then two
formal missions. Participants filled out survey sections
after each step in Session 2. Consent forms were attained at
the beginning.

Data, Metrics, and Measures
The study used 469 survey items to elicit or quantify 22
constructs spanning demographics, individual differences
(e.g., personality, spatial ability, game experience),
accuracy of Theory of Mind, and teamwork process and
climate. The testbed message bus registered all
experimental metadata (e.g., the specific assignment of
marker block legends and maps to participants, and
identifiers of trials and teams) and all events in the
Minecraft world (e.g., moving, using tools, and rescuing a
victim), their timestamps, locations, and the entities
involved. In addition, the study captured experimenters’
Bird’s-eye view videos of trials (see Figure 4); Zoom™
videos, audio, and transcriptions; as well as various

abstractions of the data (e.g., field of view, semantic
translation of location, speech act classes).

ASI agents generated measurements relevant to four
metrics of accuracy (see Table 2) using various
combinations of the data above. Human observers
generated measurements on the four metrics from
Bird’s-eye view videos that presented participants’
locations on the building map, their first-person views, and
their voice communication. Both ASI agents and human
observers’ performance was evaluated over 24 trials
(18.75% of 128 experimental trials) that were held out for
use in testing ASI (thus not available for training ASI).

Figure 4: Bird’s-eye view displays Zoom speakers’ identity and
participants’ game views (top) and the mission space (bottom).

Both humans and ASI agents were evaluated on the
same four metrics (see Table 2) relevant to MToM. The
accuracy of ASI prediction of effects (specifically, ASI
predictions of the team’s terminal game score) was
measured at three time points per trial (i.e., min 4, 9, and
14), on the theory that ASI must estimate the effects of its
potential interventions to select well between them. The
accuracy of ASI inferences concerning participant
knowledge was measured because such inferences are
presumably required by ASI to generate interventions that
remedy differences in accurate knowledge between team
members (here, M3 concerned systematic differences in
the content of accurate but incomplete maps provided to
participants) and conflicting or false beliefs (M6 addressed
experimentally induced conflicts in beliefs between
participants concerning the meaning of numbered marker
blocks). Measurements on M3 and M6 were also taken at
three time points per trial. The accuracy of ASI predictions
of actions based on conflicting beliefs between participants
was measured in a variant of the Sally-Anne task in which
ASI predicted whether a participant would enter a room
given the presence of a marker block laid by a participant
with a conflicting belief about that block’s meaning. A
measurement was computed at each such event for the one
player whose block semantics differed from that of the



other two players. We note that the number of evaluation
metrics (four) was intentionally small. This ensured that
ASI developers invested a modest effort in satisfying
program assessment requirements but had spare capacity to
create and test alternative MToM capabilities.

Metric ID:
Function 

ASI Agent &
Human
Observer
infer /
predict

Measure

M1: Prediction
of effects of
future
interventions

Team score
(3x per trial at
fixed times)

Normalized RMSE, or
RMSE divided by the
mean of all team scores
for each trial.
1–NRMSE presented
here to match the
direction of other
measures.

M3: Inference
of member
mental model /
knowledge

Given map
information
(3x)

Mean accuracy. Guessing
computed as the
conditional probability of
correctly guessing the
first then second of three
map options in each trial,
or ⅓ x ½ = ⅙ 

M6: Inference
of member
mental model /
knowledge

Given marker
block
meanings (3x)

Mean accuracy. Guessing
computed as conditional
probability of correctly
guessing the first then
second options. Value is
⅓ since one of two labels
is twice as frequent.

M7: Prediction
of action given
member beliefs
(Sally-Anne)

Room entry
in response to
another
participant’s
marker block
(many per
trial)

Mean accuracy. Guessing
computed based on
random selection of ‘did
enter’ or ‘did not enter’
room for each
occurrence.

Table 2: Metrics for ASI Agents and human Observers.

Artificial Social Intelligence

Six program performers employed tasked with designing
and building ASI created distinctly different agents to
process the data from this experiment into inferences and
predictions.

The University of Arizona team, led by Adarsh Pyarelal,
used dynamic Bayes networks (DBNs) to model individual
and team activity states and mental states (ToM), using
in-game participant behavior, natural language processing,
and speech analysis.

The SIFT team, led by Chris Geib, employed MC Tree
Search over learnable action grammars to generate multiple
candidate explanations for observed behavior.
Explanations included explicit ascriptions of ToM beliefs
for each agent. The system then used weighted model
counting over the explanations to probabilistically infer the
most likely mental states and asymmetric beliefs between
team members.

The team from University of Southern California, led by
David Pynadath, applied recursive POMDPs as candidate
participant models with ToM, constructed by combining a
RDDL specification of the domain with perturbations
along domain-independent dimensions. The ASI agent
performed Bayesian inference to update beliefs over these
candidate models based on observed team and individual
behavior.

The team from DOLL/MIT, led by Paul Robertson,
generated narratives from stories that represent, for each
team member, a story of the team. The Narrative provided
a rationale for the past and predictions for the future. This
ASI agent also used mechanisms for inverse planning,
probabilistic ToM, probabilistic conditional preference,
story understanding (Genesis), and learned player
capability, such as speed.

The team from Carnegie Mellon, led by Katia Sycara,
implemented a modular neural network Theory of Mind
(ToM) model that infers an individual's beliefs, goals and
intentions from observations and environmental context;
introspection resolves deviations between predicted and
observed behaviors. Combined ToM models of teammates
provided reasoning over shared mental models, team
processes and produce appropriate individual and team
interventions.

The team from Charles River Analytics, led by Bryan
Loyall, created a Cognitive Inverter that uses probabilistic
programming to recognize goals, behaviors, and mental
states from open world observations. A Strategic Coach
will select the most effective interventions, based on
principles from interactive narrative research.

Findings

An evaluation compared inferences and predictions by six
ASI agents to a human baseline of three observers for M1,
M3, and M6, as well as that of two observers for M7, and
to a guessing baseline that assumes a random draw from a
known distribution for the possible response options. As
summarized in Figure 5, the human baseline was higher



(better) than the performance of all ASI agents on each
metric, and when computed both as an average rank
(human baseline rank = 1.0, average ASI agent rank = 4.2)
and in terms of average performance over median value on
each measure (human baseline = 0.12, ASI agents = -0.01).
No one ASI agent consistently outperformed the others.
The variation between agents is likely due to differences in
approach. Variation between humans and ASI agents may
be due both to differences in their respective inference and
prediction methods, and variations in the data that fed
those methods. ASI agents consumed testbed message bus
data, humans used mainly video and audio. These data
sources differ in representation of information and in the
information they represent. Humans and ASI agents
performed better than guessing in nearly all cases; average
performance over guessing was similar between the human
baseline (0.47) and ASI agents (0.35) but varied somewhat
by metric (see Figure 6).

Figure 5: Accuracy of human observers (triangle) and artificial
agents (circles) on four tests of social intelligence. 

Figure 6: Accuracy of human observers (yellow) and average of
artificial agents (blue) on four tests of social intelligence. Error

bars where provided represent +/- 1SE.

For those measures on which agents performed most
similarly to each other (M1 and M6), agent accuracy
tended to improve over time within each trial (see Figures
7 and 8).

The results collectively suggest that these ASI agents
were able to reliably predict team score (M1) and actions
of individual members (M7), infer divergent beliefs (M3),
and infer false beliefs (M6). However, the ability of these
ASI agents to infer false beliefs (M6) and predict future
actions related to false beliefs (M7) lags further behind
human capabilities than their ability to predict future
performance (M1) and infer divergent beliefs (M3).

Figure 7: Accuracy predicting final score (M1) thrice per trial,
measured as 1-NRMSE. Guessing would result in a score of zero

on this measure.

Figure 8: Percent accuracy for inferring marker block semantics
(M6), an indicator of false beliefs.

ASI agents were also able to take advantage of
information within the trial as it progressed. This suggests
that these ASI agents learned something about the structure
of the task and team coordination that enabled them to
assess performance (M1) and false beliefs (M6) more
accurately as the trial progressed. In the case of



performance scores, ASI may have been able to take
advantage of decreasing variance in scores as the trial
progressed and the diminishing likelihood of accruing
more points by rescuing victims. In the case of M6, ASI
agents had additional opportunities to observe participant
behavior related to marker block placement and movement
given others’ placement, and therefore allowed ASI agents
the opportunity to update prior beliefs on the likely marker
block assignment for each participant. Agents did not
reliably increase the accuracy of their inferences
concerning divergent map information (M3). Analyses by
other program researchers indicate that participants often
did not use the information provided by maps. Thus,
participant planning, navigation, and communication may
have held few of the cues that ASI presumably needed to
infer that distribution.

Conclusions

This study developed a rich search and rescue simulation
that elicits human taskwork and teamwork. ASI agents
successfully used data from this environment to make
inferences and predictions that often approached the
accuracy of those made by human observers, though ASI
and humans used somewhat different data sources (e.g.,
ASI used message bus traffic and humans used video). The
qualitative rationales of the human observers, now under
study, may provide insights to refine the design of ASI
agents. The rich data provide many opportunities to
analyze the relationships between the survey-based
variables and action-based variables to further develop
reliable and generalizable Machine Theory of Mind
(MToM) in the urban search and rescue task environment.

The generalizability of these findings will be tested in
planned research. In a 2022 experiment, we will introduce
significant perturbations in the task, such as deprivation of
communications or changes in task structure or rewards. In
research after that, we plan to change the task domain. We
predict that ASI will generalize if they develop and
maintain an accurate MToT, that is if they are focused not
on individual USAR tasks, but on teamwork skills such as
leadership, backup behavior, and communication.

Future research will also develop ASI agents that advise
teams by leveraging the inferential and predictive abilities
enabled by a MToT. That research will evaluate the effects
of ASI interventions on team performance, team process,
and team member perceptions of the utility and
trustworthiness of the ASI designed to aid them.
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