Matching Items (52)
150051-Thumbnail Image.png
Description
The purpose of this study was to investigate the impacts of visual cues and different types of self-explanation prompts on learning, cognitive load and intrinsic motivation, as well as the potential interaction between the two factors in a multimedia environment that was designed to deliver a computer-based lesson about the

The purpose of this study was to investigate the impacts of visual cues and different types of self-explanation prompts on learning, cognitive load and intrinsic motivation, as well as the potential interaction between the two factors in a multimedia environment that was designed to deliver a computer-based lesson about the human cardiovascular system. A total of 126 college students were randomly assigned in equal numbers (N = 21) to one of the six experimental conditions in a 2 X 3 factorial design with visual cueing (visual cues vs. no cues) and type of self-explanation prompts (prediction prompts vs. reflection prompts vs. no prompts) as the between-subjects factors. They completed a pretest, subjective cognitive load questions, intrinsic motivation questions, and a posttest during the course of the experience. A subsample (49 out of 126) of the participants' eye movements were tracked by an eye tracker. The results revealed that (a) participants presented with visually cued animations had significantly higher learning outcome scores than their peers who viewed uncued animations; and (b) cognitive load and intrinsic motivation had different impacts on learning in multimedia due to the moderation effect of visual cueing. There were no other significant findings in terms of learning outcomes, cognitive load, intrinsic motivation, and eye movements. Limitations, implications and future directions are discussed within the framework of cognitive load theory, cognitive theory of multimedia learning and cognitive-affective theory of learning with media.
ContributorsLin, Lijia (Author) / Atkinson, Robert (Thesis advisor) / Nelson, Brian (Committee member) / Savenye, Wilhelmina (Committee member) / Arizona State University (Publisher)
Created2011
151416-Thumbnail Image.png
Description
The purpose of this study was to investigate the effects of instructor response prompts and rubrics on students' performance in an asynchronous discussion-board assignment, their learning achievement on an objective-type posttest, and their reported satisfaction levels. Researchers who have studied asynchronous computer-mediated student discussion transcripts have found evidence of mostly

The purpose of this study was to investigate the effects of instructor response prompts and rubrics on students' performance in an asynchronous discussion-board assignment, their learning achievement on an objective-type posttest, and their reported satisfaction levels. Researchers who have studied asynchronous computer-mediated student discussion transcripts have found evidence of mostly mid-level critical thinking skills, with fewer examples limited to lower or higher order thinking skill demonstration. Some researchers suggest that instructors may facilitate increased demonstration of higher-order critical thinking skills within asynchronous discussion-board activities. However, there is little empirical evidence available to compare the use of different external supports to facilitate students' critical thinking skills performance and learning achievement in blended learning environments. Results of the present study indicate that response prompts and rubrics can affect students' discussion performance, learning, and satisfaction ratings. The results, however, are complex, perhaps mirroring the complexity of instructor-led online learning environments. Regarding discussion board performance, presenting students with a rubric tended to yield higher scores on most aspects that is, on overall performance, as well as depth and breadth of performance, though these differences were not significant. In contrast, instructor prompts tended to yield lower scores on aspects of discussion board performance. On breadth, in fact, this main effect difference was significant. Interactions also indicated significant differences on several aspects of discussion board performance, in most cases indicating that the combination of rubric and prompt was detrimental to scores. The learning performance on the quiz showed, again, the effectiveness of rubrics, with students who received the rubric earning significantly higher scores, and with no main effects or interactions for instructor prompts. Regarding student satisfaction, again, the picture is complicated. Results indicated that, in some instances, the integration of prompts resulted in lower satisfaction ratings, particularly in the areas of students' perceptions of the amount of work required, learning in the partially online format, and student-to-student interaction. Based on these results, design considerations to support rubric use and explicit feedback in asynchronous discussions to support student learning are proposed.
ContributorsGiacumo, Lisa (Author) / Savenye, Wilhelmina (Thesis advisor) / Nelson, Brian (Committee member) / Legacy, Jane (Committee member) / Bitter, Gary (Committee member) / Arizona State University (Publisher)
Created2012
150808-Thumbnail Image.png
Description
The goal of this research was to understand the different kinds of learning that take place in Mod The Sims (MTS), an online Sims gaming community. The study aimed to explore users' experiences and to understand learning practices that are not commonly observed in formal educational settings. To achieve this

The goal of this research was to understand the different kinds of learning that take place in Mod The Sims (MTS), an online Sims gaming community. The study aimed to explore users' experiences and to understand learning practices that are not commonly observed in formal educational settings. To achieve this goal, the researcher conducted a four-year virtual ethnographic study that followed guidelines set forth in Hine (2000). After Hine, the study focused on understanding the complexity of the relationships between technology and social interactions among people, with a particular emphasis on investigating how participants shaped both the culture and structure of the affinity space. The format for the dissertation consists of an introduction, three core chapters that present different sets of findings, and a concluding chapter. Each of the core chapters, which can stand alone as separate studies, applies different theoretical lenses and analytic methods and uses a separate data set. The data corpus includes hundreds of thread posts, member profiles, online interview data obtained through email and personal messaging (PM), numerous screenshots, field notes, and additional artifacts, such as college coursework shared by a participant. Chapter 2 examines thread posts to understand the social support system in MTS and the language learning practices of one member who was a non-English speaker. Chapter 3 analyzes thread posts from administrative staff and users in MTS to identify patterns of interactions, with the goal of ascertaining how users contribute to the ongoing design and redesign of the site. Chapter 4 investigates user-generated tutorials to understand the nature of these instructional texts and how they are adapted to an online context. The final chapter (Chapter 5) presents conclusions about how the analyses overall represent examples of participatory learning practices that expand our understanding of 21st century learning. Finally, the chapter offers theoretical and practical implications, reflections on lessons learned, and suggestions for future research.
ContributorsLee, Yoonhee Naseef (Author) / Hayes, Elisabeth (Thesis advisor) / Gee, James (Committee member) / Nelson, Brian (Committee member) / Arizona State University (Publisher)
Created2012
152322-Thumbnail Image.png
Description
The purpose of this survey study was to collect data from pre-K-12 educators in the U.S. regarding their perceptions of the purpose, conceptions, use, impact, and results of educational research. The survey tool was based on existing questionnaires and case studies in the literature, as well as newly developed items.

The purpose of this survey study was to collect data from pre-K-12 educators in the U.S. regarding their perceptions of the purpose, conceptions, use, impact, and results of educational research. The survey tool was based on existing questionnaires and case studies in the literature, as well as newly developed items. 3,908 educators in a database developed over 10+ years at the world's largest education company were sent a recruiting email; 400 elementary and secondary teachers in the final sample completed the online survey containing 48 questions over a three-week deployment period in the spring of 2013. Results indicated that overall teachers believe educational research is important, that the most important purpose of research is to increase effectiveness of classroom practice, yet research is not frequently sought out during the course of practice. Teachers perceive results in research journals as the most trustworthy yet also perceive research journals the most difficult to access (relying second-most often for research via in-service trainings). These findings have implications for teachers, administrators, policy-makers, and researchers. Educational researchers should seek to address both the theoretical and the applied aspects of learning. Professional development must make explicit links between research findings and classroom strategies and tactics, and research must be made more readily available to those who are not currently seeking additional credentialing, and therefore do not individually have access to scholarly literature. Further research is needed to expand the survey sample and refine the survey instrument. Similar research with administrators in pre-K-20 settings as well as in-depth interviews would serve to investigate the "why" of many findings.
ContributorsMahoney, Shawn (Author) / Savenye, Wilhelmina (Thesis advisor) / Nelson, Brian (Committee member) / Atkinson, Robert (Committee member) / Arizona State University (Publisher)
Created2013
152306-Thumbnail Image.png
Description
With the unveiling of the National Educational Technology Plan 2010, both preservice and inservice K12 teachers in the United States are expected to create a classroom environment that fosters the creation of digital citizens. However, it is unclear whether or not teacher education programs build this direct instruction, or any

With the unveiling of the National Educational Technology Plan 2010, both preservice and inservice K12 teachers in the United States are expected to create a classroom environment that fosters the creation of digital citizens. However, it is unclear whether or not teacher education programs build this direct instruction, or any other method of introducing students to the National Education Technology Standards (NETS), "a standard of excellence and best practices in learning, teaching and leading with technology in education," into their curriculum (International Society for Technology in Education, 2012). As with most teaching skills, the NETS and standards-based technology integration must be learned through exposure during the teacher preparation curriculum, either through modeling, direct instruction or assignments constructed to encourage standards-based technology integration. This study attempted to determine the extent to which preservice teachers at Arizona State University (ASU) enrolled in the Mary Lou Fulton Teachers College (MLFTC) can recognize the National Education Technology Standards (NETS) published by the International Society for Technology in Education (ISTE) and to what extent preservice teachers are exposed to technology integration in accordance with the NETS-T standards in their preparation curriculum in order to answer the questions of whether or not teacher education curriculum provides students an opportunity to learn and apply the NETS-T and if preservice teachers in core teacher preparation program courses that include objectives that integrate technology are more likely to be able to identify NETS-T standards than those in courses that do not include these elements In order to answer these questions, a mixed-method design study was utilized to gather data from an electronic survey, one-on-one interviews with students, faculty, and administrators, and document analysis of core course objectives and curriculum goals in the teacher certification program at ASU. The data was analyzed in order to determine the relationship between the preservice teachers, the NETS-T standards, and the role technology plays in the curriculum of the teacher preparation program. Results of the analysis indicate that preservice teachers have a minimum NETS-T awareness at the Literacy level, indicating that they can use technology skills when prompted and explore technology independently.
ContributorsLewis, Carrie L (Author) / Nelson, Brian (Thesis advisor) / Archambault, Leanna (Thesis advisor) / Savenye, Wilhelmenia (Committee member) / Atkinson, Robert (Committee member) / Arizona State University (Publisher)
Created2013
151845-Thumbnail Image.png
Description
This study explored three methods to measure cognitive load in a learning environment using four logic puzzles that systematically varied in level of intrinsic cognitive load. Participants' perceived intrinsic load was simultaneously measured with a self-report measure--a traditional subjective measure--and two objective, physiological measures based on eye-tracking and EEG technology.

This study explored three methods to measure cognitive load in a learning environment using four logic puzzles that systematically varied in level of intrinsic cognitive load. Participants' perceived intrinsic load was simultaneously measured with a self-report measure--a traditional subjective measure--and two objective, physiological measures based on eye-tracking and EEG technology. In addition to gathering self-report, eye-tracking data, and EEG data, this study also captured data on individual difference variables and puzzle performance. Specifically, this study addressed the following research questions: 1. Are self-report ratings of cognitive load sensitive to tasks that increase in level of intrinsic load? 2. Are physiological measures sensitive to tasks that increase in level of intrinsic load? 3. To what extent do objective physiological measures and individual difference variables predict self-report ratings of intrinsic cognitive load? 4. Do the number of errors and the amount of time spent on each puzzle increase as the puzzle difficulty increases? Participants were 56 undergraduate students. Results from analyses with inferential statistics and data-mining techniques indicated features from the physiological data were sensitive to the puzzle tasks that varied in level of intrinsic load. The self-report measures performed similarly when the difference in intrinsic load of the puzzles was the most varied. Implications for these results and future directions for this line of research are discussed.
ContributorsJoseph, Stacey (Author) / Atkinson, Robert K (Thesis advisor) / Johnson-Glenberg, Mina (Committee member) / Nelson, Brian (Committee member) / Klein, James (Committee member) / Arizona State University (Publisher)
Created2013
151573-Thumbnail Image.png
Description
The gameplay experience can be understood as an interaction between player and game design characteristics. A greater understanding of these characteristics can be gained through empirical means. Subsequently, an enhanced knowledge of these characteristics should enable the creation of games that effectively generate desirable experiences for players. The purpose of

The gameplay experience can be understood as an interaction between player and game design characteristics. A greater understanding of these characteristics can be gained through empirical means. Subsequently, an enhanced knowledge of these characteristics should enable the creation of games that effectively generate desirable experiences for players. The purpose of this study was to investigate the relationships between gameplay enjoyment and the individual characteristics of gaming goal orientations, game usage, and gender. A total of 301 participants were surveyed and the data were analyzed using Structural Equation Modeling (SEM). This led to an expanded Gameplay Enjoyment Model (GEM) with 41 game features, an overarching Enjoyment factor, and 9 specific components, including Challenge, Companionship, Discovery, Fantasy, Fidelity, Identity, Multiplayer, Recognition, and Strategy. Furthermore, the 3x2 educational goal orientation framework was successfully applied to a gaming context. The resulting 3x2 Gaming Goal Orientations (GGO) model consists of 18 statements that describe players' motivations for gaming, which are distributed across the six dimensions of Task-Approach, Task-Avoidance, Self-Approach, Self-Avoidance, Other-Approach, and Other-Avoidance. Lastly, players' individual characteristics were used to predict gameplay enjoyment, which resulted in the formation of the GEM-Individual Characteristics (GEM-IC) model. In GEM-IC, the six GGO dimensions were the strongest predictors. Meanwhile, game usage variables like multiplayer, genre, and platform preference, were minimal to moderate predictors. Although commonly appearing in games research, gender and game time commitment variables failed to predict enjoyment. The results of this study enable important work to be conducted involving game experiences and player characteristics. After several empirical iterations, GEM is considered suitable to employ as a research and design tool. In addition, GGO should be useful to researchers interested in how player motivations relate to gameplay experiences. Moreover, GEM-IC points to several variables that may prove useful in future research. Accordingly, it is posited that researchers will derive more meaningful insights on games and players by investigating detailed, context-specific characteristics as compared to general, demographic ones. Ultimately, it is believed that GEM, GGO, and GEM-IC will be useful tools for researchers and designers who seek to create effective gameplay experiences that meet the needs of players.
ContributorsQuick, John (Author) / Atkinson, Robert (Thesis advisor) / McNamara, Danielle (Committee member) / Nelson, Brian (Committee member) / Savenye, Wilhelmina (Committee member) / Arizona State University (Publisher)
Created2013
128692-Thumbnail Image.png
Description

Current science assessments typically present a series of isolated fact-based questions, poorly representing the complexity of how real-world science is constructed. The National Research Council asserts that this needs to change to reflect a more authentic model of science practice. We strongly concur and suggest that good science assessments need

Current science assessments typically present a series of isolated fact-based questions, poorly representing the complexity of how real-world science is constructed. The National Research Council asserts that this needs to change to reflect a more authentic model of science practice. We strongly concur and suggest that good science assessments need to consist of several key factors: integration of science content with scientific inquiry, contextualization of questions, efficiency of grading and statistical validity and reliability. Through our Situated Assessment using Virtual Environments for Science Content and inquiry (SAVE Science) research project, we have developed an immersive virtual environment to assess middle school children’s understanding of science content and processes that they have been taught through typical classroom instruction. In the virtual environment, participants complete a problem-based assessment by exploring a game world, interacting with computer-based characters and objects, collecting and analyzing possible clues to the assessment problem. Students can solve the problems situated in the virtual environment in multiple ways; many of these are equally correct while others uncover misconceptions regarding inference-making. In this paper, we discuss stage one in the design and assessment of our project, focusing on our design strategies for integrating content and inquiry assessment and on early implementation results. We conclude that immersive virtual environments do offer the potential for creating effective science assessments based on our framework and that we need to consider engagement as part of the framework.

ContributorsJass Ketelhut, Diane (Author) / Nelson, Brian (Author) / Schifter, Catherine (Author) / Kim, Younsu (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2013-05-30
152593-Thumbnail Image.png
Description
Mobile apps have improved human lifestyle in various aspects ranging from instant messaging to tele-health. In the current app development paradigm, apps are being developed individually and agnostic of each other. The goal of this thesis is to allow a new world where multiple apps communicate with each other to

Mobile apps have improved human lifestyle in various aspects ranging from instant messaging to tele-health. In the current app development paradigm, apps are being developed individually and agnostic of each other. The goal of this thesis is to allow a new world where multiple apps communicate with each other to achieve synergistic benefits. To enable integration between apps, manual communication between developers is needed, which can be problematic on many levels. In order to promote app integration, a systematic approach towards data sharing between multiple apps is essential. However, current approaches to app integration require large code modifications to reap the benefits of shared data such as requiring developers to provide APIs or use large, invasive middlewares. In this thesis, a data sharing framework was developed providing a non-invasive interface between mobile apps for data sharing and integration. A separate app acts as a registry to allow apps to register database tables to be shared and query this information. Two health monitoring apps were developed to evaluate the sharing framework and different methods of data integration between apps to promote synergistic feedback. The health monitoring apps have shown non-invasive solutions can provide data sharing functionality without large code modifications and manual communication between developers.
ContributorsMilazzo, Joseph (Author) / Gupta, Sandeep K.S. (Thesis advisor) / Varsamopoulos, Georgios (Committee member) / Nelson, Brian (Committee member) / Arizona State University (Publisher)
Created2014
153305-Thumbnail Image.png
Description
This research study investigated the effects of high fidelity graphics on both learning and presence, or the "sense of being there," inside a Virtual Learning Environment (VLE). Four versions of a VLE on the subject of the element mercury were created, each with a different combination of high and

This research study investigated the effects of high fidelity graphics on both learning and presence, or the "sense of being there," inside a Virtual Learning Environment (VLE). Four versions of a VLE on the subject of the element mercury were created, each with a different combination of high and low fidelity polygon models and high and low fidelity shaders. A total of 76 college age (18+ years of age) participants were randomly assigned to one of the four conditions. The participants interacted with the VLE and then completed several posttest measures on learning, presence, and attitudes towards the VLE experience. Demographic information was also collected, including age, computer gameplay experience, number of virtual environments interacted with, gender and time spent in this virtual environment. The data was analyzed as a 2 x 2 between subjects ANOVA.

The main effects of shader fidelity and polygon fidelity were both non- significant for both learning and all presence subscales inside the VLE. In addition, there was no significant interaction between shader fidelity and model fidelity. However, there were two significant results on the supplementary variables. First, gender was found to have a significant main effect on all the presence subscales. Females reported higher average levels of presence than their male counterparts. Second, gameplay hours, or the number of hours a participant played computer games per week, also had a significant main effect on participant score on the learning measure. The participants who reported playing 15+ hours of computer games per week, the highest amount of time in the variable, had the highest score as a group on the mercury learning measure while those participants that played 1-5 hours per week had the lowest scores.
ContributorsHorton, Scott (Author) / Nelson, Brian (Thesis advisor) / Savenye, Wilhelmina (Committee member) / Atkinson, Robert (Committee member) / Arizona State University (Publisher)
Created2014
153077-Thumbnail Image.png
Description
This dissertation study quantitatively measured the performance of 345 students who received public speaking instruction through an online platform presented in one of six experimental conditions in order to explore the ability of online lectures to replicate the characteristics of instructor presence and learner interaction traditionally associated with face-to-face public

This dissertation study quantitatively measured the performance of 345 students who received public speaking instruction through an online platform presented in one of six experimental conditions in order to explore the ability of online lectures to replicate the characteristics of instructor presence and learner interaction traditionally associated with face-to-face public speaking courses. The study investigated the following research questions:

RQ1: How does the visibility of an instructor in a public speaking video lesson affect students' perception of presence?

RQ2: How does the visibility of an instructor in a public speaking video lesson affect student learning?

RQ3: How do self-explanation (Constructive) and note-taking (Active) types of learning activities affect students' perception of presence compared to passive lessons when presented in a video lesson?

RQ4: How do self-explanation (Constructive) and note-taking (Active) types of learning activities affect student learning compared to passive lessons when presented in a video lesson?

Additionally, the study collected qualitative feedback from participants on their experience in order to improve understanding of how to effectively design lectures for public speaking courses.

Results of the study were unable to statistically distinguish between students assigned to treatments that varied in both modality and level of activity. However, a significant finding of this study is that learning gains and students' perception of instructor presence were positive across all conditions.

The lack of significant differences by treatment indicates that the design attributes at the center of the study may be unnecessary considerations for developing content for online learning. Consequently, the improved performance of participants regardless of their assigned treatment in this study identifies a limitation to the application of Media Equation Theory and the Interactive-Constructive-Active-Passive (ICAP) Framework for designing online learning content for public speaking students as well as identifies two key implications: 1) exposure to an online lesson can increase learning; and 2) exposure to an online lesson can serve as a cost-effective alternative for producing lessons in public speaking courses.
ContributorsButler, Nicholas (Author) / Nelson, Brian (Thesis advisor) / Atkinson, Robert (Committee member) / Savenye, Wilhelmina (Committee member) / Arizona State University (Publisher)
Created2014
153127-Thumbnail Image.png
Description
Many web search improvements have been developed since the advent of the modern search engine, but one underrepresented area is the application of specific customizations to search results for educational web sites. In order to address this issue and improve the relevance of search results in automated learning environments, this

Many web search improvements have been developed since the advent of the modern search engine, but one underrepresented area is the application of specific customizations to search results for educational web sites. In order to address this issue and improve the relevance of search results in automated learning environments, this work has integrated context-aware search principles with applications of preference based re-ranking and query modifications. This research investigates several aspects of context-aware search principles, specifically context-sensitive and preference based re-ranking of results which take user inputs as to their preferred content, and combines this with search query modifications which automatically search for a variety of modified terms based on the given search query, integrating these results into the overall re-ranking for the context. The result of this work is a novel web search algorithm which could be applied to any online learning environment attempting to collect relevant resources for learning about a given topic. The algorithm has been evaluated through user studies comparing traditional search results to the context-aware results returned through the algorithm for a given topic. These studies explore how this integration of methods could provide improved relevance in the search results returned when compared against other modern search engines.
ContributorsVan Egmond, Eric (Author) / Burleson, Winslow (Thesis advisor) / Syrotiuk, Violet (Thesis advisor) / Nelson, Brian (Committee member) / Arizona State University (Publisher)
Created2014
153254-Thumbnail Image.png
Description
The overall purpose of this study was to explore the dynamics of teaching and learning in the context of an informal, online discussion forum. This investigation utilized the Community of Inquiry (CoI) elements of Teaching Presence and Social Presence along with the construct of Learning Presence to examine Adobe® Forums,

The overall purpose of this study was to explore the dynamics of teaching and learning in the context of an informal, online discussion forum. This investigation utilized the Community of Inquiry (CoI) elements of Teaching Presence and Social Presence along with the construct of Learning Presence to examine Adobe® Forums, Photoshop® for Beginners Forum (PfBF) an internet discussion forum designed to provide support for beginning users of Adobe Photoshop. The researcher collected four days of discussion post data comprising 62 discussion threads for a total of 202 discussion posts. During this initial pilot analysis, the discussion threads were divided into posts created by members who were deemed to be acting as teachers and posts written by members acting as learners. Three analyses were conducted. First, a pilot analysis was conducted where the researcher divided the data in half and coded 31 discussion threads and a total of 142 discussion posts with the Teaching Presence, Social Presence and Learning Presence coding schemes. Second, a reliability analysis was conducted to determine the interrater reliability of the coding schemes. For this analysis two additional coders were recruited, trained and coded a small subsample of data (4 discussion threads for a total of 29 discussion posts) using the same three coding schemes. Third, a final analysis was conducted where the researcher coded and analyzed 134 discussion posts created by 24 teachers using the Teaching Presence coding scheme. At the conclusion of the final analysis, it was determined that eighteen percent (18%) of the data could not be coded using the Teaching Presence coding scheme. However, this data were observed to contain behavioral indicators of Social Presence. Consequently, the Social Presence coding scheme was used to code and analyze the remaining data. The results of this study revealed that forum members who interact on PfBF do indeed exhibit Teaching Presence behaviors. Direct Instruction was the largest category of Teaching Presence behaviors exhibited, over and above Facilitating Discussion and Design and Organization. It was also observed that forum members serving in the role of teachers exhibit behaviors of Social Presence alongside Teaching Presence behaviors.
ContributorsWilliams, Indi Marie (Author) / Gee, Elizabeth (Thesis advisor) / Olaniran, Bolanle (Committee member) / Nelson, Brian (Committee member) / Arizona State University (Publisher)
Created2014
153513-Thumbnail Image.png
Description
This study aims to uncover whether English Central, an online English as a Second Language tool, improves speaking proficiency for undergraduate students with developing English skills. Eighty-three advanced English language learners from the American English and Culture Program at Arizona State University were randomly assigned to one of three

This study aims to uncover whether English Central, an online English as a Second Language tool, improves speaking proficiency for undergraduate students with developing English skills. Eighty-three advanced English language learners from the American English and Culture Program at Arizona State University were randomly assigned to one of three conditions: the use of English Central with a learner-control, shared-control, and a no-treatment condition. The two treatment groups were assigned approximately 14.7 hours of online instruction. The relative impact of each of the three conditions was assessed using two measures. First, the Pearson Versant Test (www.versanttest.com), a well-established English-as-a-second-language speaking test, was administered to all of the participants as a pre- and post-test measure. Second, students were given a post-treatment questionnaire that measured their motivation in using online instruction in general, and English Central specifically. Since a significant teacher effect was found, teachers involved in this study were also interviewed in order to ascertain their attitude toward English Central as a homework tool. Learner outcomes were significantly different between the shared and learner conditions. Student motivation was predictive of learning outcomes. Subjects in the shared condition outperformed those in the learner condition. Furthermore, those in the shared condition scored higher than the control condition; however, this result did not reach statistical significance. Results of the follow-up teacher survey revealed that while a teacher's view of the tool (positive or negative), was not a predictor of student success, teacher presentation of the tool may lead to a significant impact on student learning outcomes.
ContributorsDixon, Shane Y. (Shane Yahlu) (Author) / Atkinson, Robert (Thesis advisor) / Savenye, Wilhelmina (Committee member) / Nelson, Brian (Committee member) / Arizona State University (Publisher)
Created2015
154054-Thumbnail Image.png
Description
The American Heart Association recommended in 1997 the data elements that should be collected from resuscitations in hospitals. (15) Currently, data documentation from resuscitation events in hospitals, termed ‘code blue’ events, utilizes a paper form, which is institution-specific. Problems with data capture and transcription exists, due to the challenges of

The American Heart Association recommended in 1997 the data elements that should be collected from resuscitations in hospitals. (15) Currently, data documentation from resuscitation events in hospitals, termed ‘code blue’ events, utilizes a paper form, which is institution-specific. Problems with data capture and transcription exists, due to the challenges of dynamic documentation of patient, event and outcome variables as the code blue event unfolds.

This thesis is based on the hypothesis that an electronic version of code blue real-time data capture would lead to improved resuscitation data transcription, and enable clinicians to address deficiencies in quality of care. The primary goal of this thesis is to create an iOS based application, primarily designed for iPads, for code blue events at the Mayo Clinic Hospital. The secondary goal is to build an open-source software development framework for converting paper-based hospital protocols into digital format.

The tool created in this study enabled data documentation to be completed electronically rather than on paper for resuscitation outcomes. The tool was evaluated for usability with twenty nurses, the end-users, at Mayo Clinic in Phoenix, Arizona. The results showed the preference of users for the iPad application. Furthermore, a qualitative survey showed the clinicians perceived the electronic version to be more accurate and efficient than paper-based documentation, both of which are essential for an emergency code blue resuscitation procedure.
ContributorsBokhari, Wasif (Author) / Patel, Vimla L. (Thesis advisor) / Amresh, Ashish (Thesis advisor) / Nelson, Brian (Committee member) / Sen, Ayan (Committee member) / Arizona State University (Publisher)
Created2015
154470-Thumbnail Image.png
Description
For this master's thesis, an open learner model is integrated with Quinn, a teachable robotic agent developed at Arizona State University. This system is represented as a feedback system, which aims to improve a student’s understanding of a subject. It also helps to understand the effect of the learner model

For this master's thesis, an open learner model is integrated with Quinn, a teachable robotic agent developed at Arizona State University. This system is represented as a feedback system, which aims to improve a student’s understanding of a subject. It also helps to understand the effect of the learner model when it is represented by performance of the teachable agent. The feedback system represents performance of the teachable agent, and not of a student. Data in the feedback system is thus updated according to a student's understanding of the subject. This provides students an opportunity to enhance their understanding of a subject by analyzing their performance. To test the effectiveness of the feedback system, student understanding in two different conditions is analyzed. In the first condition a feedback report is not provided to the students, while in the second condition the feedback report is provided in the form of the agent’s performance.
ContributorsUpadhyay, Abha (Author) / Walker, Erin (Thesis advisor) / Nelson, Brian (Committee member) / Amresh, Ashish (Committee member) / Arizona State University (Publisher)
Created2016
154605-Thumbnail Image.png
Description
With the advent of Massive Open Online Courses (MOOCs) educators have the opportunity to collect data from students and use it to derive insightful information about the students. Specifically, for programming based courses the ability to identify the specific areas or topics that need more attention from the students can

With the advent of Massive Open Online Courses (MOOCs) educators have the opportunity to collect data from students and use it to derive insightful information about the students. Specifically, for programming based courses the ability to identify the specific areas or topics that need more attention from the students can be of immense help. But the majority of traditional, non-virtual classes lack the ability to uncover such information that can serve as a feedback to the effectiveness of teaching. In majority of the schools paper exams and assignments provide the only form of assessment to measure the success of the students in achieving the course objectives. The overall grade obtained in paper exams and assignments need not present a complete picture of a student’s strengths and weaknesses. In part, this can be addressed by incorporating research-based technology into the classrooms to obtain real-time updates on students' progress. But introducing technology to provide real-time, class-wide engagement involves a considerable investment both academically and financially. This prevents the adoption of such technology thereby preventing the ideal, technology-enabled classrooms. With increasing class sizes, it is becoming impossible for teachers to keep a persistent track of their students progress and to provide personalized feedback. What if we can we provide technology support without adding more burden to the existing pedagogical approach? How can we enable semantic enrichment of exams that can translate to students' understanding of the topics taught in the class? Can we provide feedback to students that goes beyond only numbers and reveal areas that need their focus. In this research I focus on bringing the capability of conducting insightful analysis to paper exams with a less intrusive learning analytics approach that taps into the generic classrooms with minimum technology introduction. Specifically, the work focuses on automatic indexing of programming exam questions with ontological semantics. The thesis also focuses on designing and evaluating a novel semantic visual analytics suite for in-depth course monitoring. By visualizing the semantic information to illustrate the areas that need a student’s focus and enable teachers to visualize class level progress, the system provides a richer feedback to both sides for improvement.
ContributorsPandhalkudi Govindarajan, Sesha Kumar (Author) / Hsiao, I-Han (Thesis advisor) / Nelson, Brian (Committee member) / Walker, Erin (Committee member) / Arizona State University (Publisher)
Created2016
154618-Thumbnail Image.png
Description
This research study looks at the design and development of an online concussion awareness education module. The Keep Your Head in the Game: Concussion Awareness Training for High School Athletes, or Brainbook, is a stand-alone e-learning module designed to run for fifty minutes and to be highly interactive using short

This research study looks at the design and development of an online concussion awareness education module. The Keep Your Head in the Game: Concussion Awareness Training for High School Athletes, or Brainbook, is a stand-alone e-learning module designed to run for fifty minutes and to be highly interactive using short video clips with associated comments as well as polling features to allow students to experience the content as they are learning. It was designed to provide the instruction through a framework that resembles social networking to increase relevance and engagement to the high school student-athlete population it was created for. The content is delivered through the presentation of an online conversation or a "feed" where characters with varying attitudes towards concussion, with contributions from a doctor and professional athlete, discuss concussions from their experiences and beliefs. The instructional goals of the module are to increase the athletes understanding and personal application of the causes and effects of concussions, and to motivate a change in attitude and behavior related to the perception, recognition, and care of head injuries. The design and development of this online educational module followed the tenets of design and development research as determined by Richey and Klein (2007), where the tasks of completing the design and development of the product were combined with studying the process. The study focused on what could be learned during the phases of design and development, identifying challenges that were encountered designing education that resembles social networking, testing the effectiveness of the module in relation to meeting the instructional objectives, and creating guidelines and best practices that contribute to the field of instructional design.

This design and development project was found to be a success by the design team, the client, and outside entities. Findings of the study include a breakdown of the most impactful decisions made by the design team in the design and development process, the results of the team member and client interviews to provide additional insight into the process, and results from the student athlete post-module design and attitude surveys informing if attitude change indeed occurred as a result of this educational intervention. Brainbook also received much coverage in the media and has progressed on to version 2.0, additional measures of success of the project.
ContributorsPilbeam, Renee M (Author) / Savenye, Wilhelmina (Thesis advisor) / Nelson, Brian (Thesis advisor) / Barrus, Angela (Committee member) / Arizona State University (Publisher)
Created2016
155101-Thumbnail Image.png
Description
The purpose of this study was to investigate the impacts of three types of instructional presentation methods on learning, efficiency, cognitive load, and learner attitude. A total of 67 employees of a large southwestern university working in the field of research administration were randomly assigned to one of three

The purpose of this study was to investigate the impacts of three types of instructional presentation methods on learning, efficiency, cognitive load, and learner attitude. A total of 67 employees of a large southwestern university working in the field of research administration were randomly assigned to one of three conditions. Each condition presented instructional materials using a different method, namely dynamic integrated, dynamic non-integrated, or non-dynamic non-integrated. Participants completed a short survey, pre-test, cognitive load questions, learner attitude questions, and a post-test during their experience. The results reveal that users of the dynamic integrated condition treatment showed significant improvement in both learning and efficiency. The dynamic non-integrated participants had a faster mean time to complete an assigned task, however, they also had significantly lower average test scores. There were no other significant findings in terms of cognitive load or learner attitude. Limitations, implications and future studies are discussed.
ContributorsBrown, Andrew (Author) / Nelson, Brian (Thesis advisor) / Savenye, Wilhelmina (Committee member) / Atkinson, Robert (Committee member) / Arizona State University (Publisher)
Created2016
135822-Thumbnail Image.png
Description
Keyboard input biometric authentication systems are software systems which record keystroke information and use it to identify a typist. The primary statistics used to determine the accuracy of a keyboard biometric authentication system are the false acceptance rate (FAR) and false rejection rate (FRR), which are aimed to be as

Keyboard input biometric authentication systems are software systems which record keystroke information and use it to identify a typist. The primary statistics used to determine the accuracy of a keyboard biometric authentication system are the false acceptance rate (FAR) and false rejection rate (FRR), which are aimed to be as low as possible [1]. However, even if a system has a low FAR and FRR, there is nothing stopping an attacker from also monitoring an individual's typing habits in the same way a legitimate authentication system would, and using its knowledge of their habits to recreate virtual keyboard events for typing arbitrary text, with precise timing mimicking those habits, which would theoretically spoof a legitimate keyboard biometric authentication system into thinking it is the intended user doing the typing. A proof of concept of this very attack, called keyboard input biometric authentication spoofing, is the focus of this paper, with the purpose being to show that even if a biometric authentication system is reasonably accurate, with a low FAR and FRR, it can still potentially be very vulnerable to a well-crafted spoofing system. A rudimentary keyboard input biometric authentication system was written in C and C++ which drew influence from already existing methods and attempted new methods of authentication as well. A spoofing system was then built which exploited the authentication system's statistical representation of a user's typing habits to recreate keyboard events as described above. This proof of concept is aimed at raising doubts about the idea of relying too heavily upon keyboard input based biometric authentication systems since the user's typing input can demonstrably be spoofed in this way if an attacker has full access to the system, even if the system itself is accurate. The results are that the authentication system built for this study, when ran on a database of typing event logs recorded from 15 users in 4 sessions, had a 0% FAR and FRR (more detailed analysis of FAR and FRR is also presented), yet it was still very susceptible to being spoofed, with a 44% to 71% spoofing rate in some instances.
ContributorsJohnson, Peter Thomas (Author) / Nelson, Brian (Thesis director) / Amresh, Ashish (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
Education of any skill based subject, such as mathematics or language, involves a significant amount of repetition and pratice. According to the National Survey of Student Engagements, students spend on average 17 hours per week reviewing and practicing material previously learned in a classroom, with higher performing students showing a

Education of any skill based subject, such as mathematics or language, involves a significant amount of repetition and pratice. According to the National Survey of Student Engagements, students spend on average 17 hours per week reviewing and practicing material previously learned in a classroom, with higher performing students showing a tendency to spend more time practicing. As such, learning software has emerged in the past several decades focusing on providing a wide range of examples, practice problems, and situations for users to exercise their skills. Notably, math students have benefited from software that procedurally generates a virtually infinite number of practice problems and their corresponding solutions. This allows for instantaneous feedback and automatic generation of tests and quizzes. Of course, this is only possible because software is capable of generating and verifying a virtually endless supply of sample problems across a wide range of topics within mathematics. While English learning software has progressed in a similar manner, it faces a series of hurdles distinctly different from those of mathematics. In particular, there is a wide range of exception cases present in English grammar. Some words have unique spellings for their plural forms, some words have identical spelling for plural forms, and some words are conjugated differently for only one particular tense or person-of-speech. These issues combined make the problem of generating grammatically correct sentences complicated. To compound to this problem, the grammar rules in English are vast, and often depend on the context in which they are used. Verb-tense agreement (e.g. "I eat" vs "he eats"), and conjugation of irregular verbs (e.g. swim -> swam) are common examples. This thesis presents an algorithm designed to randomly generate a virtually infinite number of practice problems for students of English as a second language. This approach differs from other generation approaches by generating based on a context set by educators, so that problems can be generated in the context of what students are currently learning. The algorithm is validated through a study in which over 35 000 sentences generated by the algorithm are verified by multiple grammar checking algorithms, and a subset of the sentences are validated against 3 education standards by a subject matter expert in the field. The study found that this approach has a significantly reduced grammar error ratio compared to other generation algorithms, and shows potential where context specification is concerned.
ContributorsMoore, Zachary Christian (Author) / Amresh, Ashish (Thesis director) / Nelson, Brian (Committee member) / Software Engineering (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135605-Thumbnail Image.png
Description
An application called "Productivity Heatmap" was created with this project with the goal of allowing users to track how productive they are over the course of a day and week, input through scheduled prompts separated by 30 minutes to 4 hours, depending on preference. The result is a heat ma

An application called "Productivity Heatmap" was created with this project with the goal of allowing users to track how productive they are over the course of a day and week, input through scheduled prompts separated by 30 minutes to 4 hours, depending on preference. The result is a heat map colored according to a user's productivity at particular times of each day during the week. The aim is to allow a user to have a visualization on when he or she is best able to be productive, given that every individual has different habits and life patterns. This application was made completely in Google's Android Studio environment using Java and XML, with SQLite being used for database management. The application runs on any Android device, and was designed to be a balance of providing useful information to a user while maintaining an attractive and intuitive interface. This thesis explores the creation of a functional mobile application for mass distribution, with a particular set of end users in mind, namely college students. Many challenges in the form of learning a new development environment were encountered and overcome, as explained in the report. The application created is a core functionality proof-of-concept of a much larger personal project in creating a versatile and useful mobile application for student use. The principles covered are the creation of a mobile application, meeting requirements specified by others, and investigating the interest generated by such a concept. Beyond this thesis, testing will be done, and future enhancements will be made for mass-market consumption.
ContributorsWeser, Matthew Paul (Author) / Nelson, Brian (Thesis director) / Balasooriya, Janaka (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135081-Thumbnail Image.png
Description
Last Hymn was created by the team of Tyler Pinho, Jefferson Le, and Curtis Spence with the desire to create an eccentric Role Playing Game focused on the exploration of a strange, dying world. Battles in the game are based off of rhythm games like Dance Dance Revolution using a

Last Hymn was created by the team of Tyler Pinho, Jefferson Le, and Curtis Spence with the desire to create an eccentric Role Playing Game focused on the exploration of a strange, dying world. Battles in the game are based off of rhythm games like Dance Dance Revolution using a procedural generation algorithm that makes every encounter unique. This is then complemented with the path system where each enemy has unique rhythm patterns to give them different types of combat opportunities. In Last Hymn, the player arrives on a train at the World's End Train Station where they are greeted by a mysterious figure and guided to the Forest where they witness the end of the world and find themselves back at the train station before they left for the Forest. With only a limited amount of time per cycle of the world, the player must constantly weigh the opportunity cost of each decision, and only with careful thought, conviction, and tenacity will the player find a conclusion from the never ending cycle of rebirth. Blending both Shinto architecture and modern elements, Last Hymn used a "fantasy-chic" aesthetic in order to provide memorable locations and dissonant imagery. As the player explores they will struggle against puzzles and dynamic, rhythm based combat while trying to unravel the mystery of the world's looping time. Last Hymn was designed to develop innovative and dynamic new solutions for combat, exploration, and mapping. From this project all three team members were able to grow their software development and game design skills, achieving goals like improved level design, improved asset pipelines while simultaneously aiming to craft an experience that will be unforgettable for players everywhere.
ContributorsPinho, Tyler (Co-author) / Le, Jefferson (Co-author) / Spence, Curtis (Co-author) / Nelson, Brian (Thesis director) / Walker, Erin (Committee member) / Kobayashi, Yoshihiro (Committee member) / Computer Science and Engineering Program (Contributor) / Computing and Informatics Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135016-Thumbnail Image.png
Description
Programming is quickly becoming as ubiquitous a tool as general mathematics. The technology field is progressing at an exponential rate and driving this constantly evolving field forward requires competent software developers. Elementary and high school educational facilities do not currently express the importance of the computer science field. Computer science

Programming is quickly becoming as ubiquitous a tool as general mathematics. The technology field is progressing at an exponential rate and driving this constantly evolving field forward requires competent software developers. Elementary and high school educational facilities do not currently express the importance of the computer science field. Computer science is not a required course in high school and nearly impossible to find at a middle school level. This lack of exposure to the field at a young age handicaps aspiring developers by not providing them with a foundation to build on when seeking a degree. This paper revolves around the development of a virtual world that encompasses principles of programming in a video game structure. The use of a virtual world-based game was chosen under the hypothesis that embedding programming instruction into a game through problem-based learning is more likely to engage young students than more traditional forms of instruction. Unlike the traditional method of instruction, a virtual world allows us to "deceive" the player into learning concepts by implicitly educating them through fun gameplay mechanics. In order to make our video game robust and self-sufficient, we have developed a predictive recursive descent parser that will validate any user-generated solutions to pre-defined logical platforming puzzles. Programming topics taught with these problems range from binary numbers to while and for loops.
ContributorsWest, Grant (Co-author) / Kury, Nizar (Co-author) / Nelson, Brian (Thesis director) / Kobayashi, Yoshihiro (Committee member) / Computer Science and Engineering Program (Contributor) / Computing and Informatics Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135037-Thumbnail Image.png
Description
Museum evaluation is an important process that aims to study an exhibit's effectiveness in engaging visitors and in teaching concepts. Imperatives and methods to strengthen museum evaluation have been suggested and implemented in the past, but ultimately faced several challenges including the collection of visitor feedback in an efficient, non-intrusive

Museum evaluation is an important process that aims to study an exhibit's effectiveness in engaging visitors and in teaching concepts. Imperatives and methods to strengthen museum evaluation have been suggested and implemented in the past, but ultimately faced several challenges including the collection of visitor feedback in an efficient, non-intrusive way. The Ask Dr. Discovery project seeks to address the challenge of conducting efficient, affordable, and large-scale science museum evaluation via an interactive app aimed at collecting direct visitor feedback through use of the app and through questionnaires that also collect demographics. This thesis investigates how the demographics of metro Phoenix science museum visitors as a whole compare to the Hispanic/Latino population of visitors, and makes use of visitor feedback from Ask Dr. Discovery to provide useful data for science museum evaluation. An analysis of responses revealed that the majority of the participants in the study (n=785) were White (Non-Hispanic) (65.59%), were 36-45 years old (36.18%) and hold a graduate degree (27.64%). Most Hispanic/Latino participants in the study were 26-35 years old (36.36%) and completed some college (28.67%). Most participants from both participant groups have never visited the museum before (32.99% of all participants; 33.57% of all Hispanics/Latinos). Further analysis suggest that museum visits may be independent of age and visitor group size. Visitor interest in science museum exhibits may be independent of their use of free time science-related activities. Data suggests that there was no real difference in exhibit interest across two different versions of the app ("modes"). Analysis of negative visitor feedback showed different question types, questions asked, and time spent on the app. Data log questions revealed the difference in time spent on the app and complexity of questions asked between adults and children, as well as the location of participants in the museum. There was no major correlation between mode type and number of questions asked, and length of use and number of questions asked.
ContributorsFernandez, Ivan (Author) / Bowman, Judd (Thesis director) / Bowman, Catherine (Committee member) / Nelson, Brian (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description
Virtual Reality (hereafter VR) and Mixed Reality (hereafter MR) have opened a new line of applications and possibilities. Amidst a vast network of potential applications, little research has been done to provide real time collaboration capability between users of VR and MR. The idea of this thesis study is to

Virtual Reality (hereafter VR) and Mixed Reality (hereafter MR) have opened a new line of applications and possibilities. Amidst a vast network of potential applications, little research has been done to provide real time collaboration capability between users of VR and MR. The idea of this thesis study is to develop and test a real time collaboration system between VR and MR. The system works similar to a Google document where two or more users can see what others are doing i.e. writing, modifying, viewing, etc. Similarly, the system developed during this study will enable users in VR and MR to collaborate in real time.

The study of developing a real-time cross-platform collaboration system between VR and MR takes into consideration a scenario in which multiple device users are connected to a multiplayer network where they are guided to perform various tasks concurrently.

Usability testing was conducted to evaluate participant perceptions of the system. Users were required to assemble a chair in alternating turns; thereafter users were required to fill a survey and give an audio interview. Results collected from the participants showed positive feedback towards using VR and MR for collaboration. However, there are several limitations with the current generation of devices that hinder mass adoption. Devices with better performance factors will lead to wider adoption.
ContributorsSeth, Nayan Sateesh (Author) / Nelson, Brian (Thesis advisor) / Walker, Erin (Committee member) / Atkinson, Robert (Committee member) / Arizona State University (Publisher)
Created2017
155754-Thumbnail Image.png
Description
There is a demanding need to empower students from kindergarten through high school to learn computer science and be equipped with the computational thinking skills that they need in today's technology driven world. However, introducing computer programming to students can be challenging, especially for those who aren't familiar with the

There is a demanding need to empower students from kindergarten through high school to learn computer science and be equipped with the computational thinking skills that they need in today's technology driven world. However, introducing computer programming to students can be challenging, especially for those who aren't familiar with the nuances of code. Several popular tools are used in curriculum for K-12 students which utilize interactive and visualization approaches to engage young kids in learning computational concepts. Possibilities of using Augmented Reality (AR) in teaching programming to novices are explored in this work.

In this thesis Ogmented, an AR application is designed which includes interactive learning material that covers a range of fundamental Object-Oriented Programming (OOP) concepts. This work aims to exploit the idea to learn abstract concepts via AR by capitalizing the strength of visual-aided and interactive elements. A user study with a group of elementary school students is conducted. It explored how students operated the AR application with the interactive elements and how they wrote codes to solve programming problems. It was observed that students who followed instructions while taking tutorials were successfully able to write fragments of codes in exercise modules. Irrespective of their knowledge about programming, majority of students were able to write executable code snippets for concepts they were taught with use of Ogmented. This shares an initial insight on using AR in classroom to teach abstract programming concepts.
ContributorsPatel, Tanvi (Author) / Hsiao, I-Han (Thesis advisor) / Nelson, Brian (Committee member) / Walker, Erin (Committee member) / Arizona State University (Publisher)
Created2017
155844-Thumbnail Image.png
Description
Human-Robot collaboration can be a challenging exercise especially when both the human and the robot want to work simultaneously on a given task. It becomes difficult for the human to understand the intentions of the robot and vice-versa. To overcome this problem, a novel approach using the concept of Mixed-Reality

Human-Robot collaboration can be a challenging exercise especially when both the human and the robot want to work simultaneously on a given task. It becomes difficult for the human to understand the intentions of the robot and vice-versa. To overcome this problem, a novel approach using the concept of Mixed-Reality has been proposed, which uses the surrounding space as the canvas to augment projected information on and around 3D objects. A vision based tracking algorithm precisely detects the pose and state of the 3D objects, and human-skeleton tracking is performed to create a system that is both human-aware as well as context-aware. Additionally, the system can warn humans about the intentions of the robot, thereby creating a safer environment to work in. An easy-to-use and universal visual language has been created which could form the basis for interaction in various human-robot collaborations in manufacturing industries.

An objective and subjective user study was conducted to test the hypothesis, that using this system to execute a human-robot collaborative task would result in higher performance as compared to using other traditional methods like printed instructions and through mobile devices. Multiple measuring tools were devised to analyze the data which finally led to the conclusion that the proposed mixed-reality projection system does improve the human-robot team's efficiency and effectiveness and hence, will be a better alternative in the future.
ContributorsRathore, Yash K (Author) / Amor, Hani Ben (Thesis advisor) / Nelson, Brian (Committee member) / Atkinson, Robert (Committee member) / Arizona State University (Publisher)
Created2017
155689-Thumbnail Image.png
Description
Paper assessment remains to be an essential formal assessment method in today's classes. However, it is difficult to track student learning behavior on physical papers. This thesis presents a new educational technology—Web Programming Grading Assistant (WPGA). WPGA not only serves as a grading system but also a feedback delivery tool

Paper assessment remains to be an essential formal assessment method in today's classes. However, it is difficult to track student learning behavior on physical papers. This thesis presents a new educational technology—Web Programming Grading Assistant (WPGA). WPGA not only serves as a grading system but also a feedback delivery tool that connects paper-based assessments to digital space. I designed a classroom study and collected data from ASU computer science classes. I tracked and modeled students' reviewing and reflecting behaviors based on the use of WPGA. I analyzed students' reviewing efforts, in terms of frequency, timing, and the associations with their academic performances. Results showed that students put extra emphasis in reviewing prior to the exams and the efforts demonstrated the desire to review formal assessments regardless of if they were graded for academic performance or for attendance. In addition, all students paid more attention on reviewing quizzes and exams toward the end of semester.
ContributorsHuang, Po-Kai (Author) / Hsiao, I-Han (Thesis advisor) / Nelson, Brian (Committee member) / VanLehn, Kurt (Committee member) / Arizona State University (Publisher)
Created2017
155225-Thumbnail Image.png
Description
Many English Language Learner (ELL) children struggle with knowledge of vocabulary and syntax. Enhanced Moved by Reading to Accelerate Comprehension in English (EMBRACE) is an interactive storybook application that teaches children to read by moving pictures on the screen to act out the sentences in the text. However, EMBRACE presents

Many English Language Learner (ELL) children struggle with knowledge of vocabulary and syntax. Enhanced Moved by Reading to Accelerate Comprehension in English (EMBRACE) is an interactive storybook application that teaches children to read by moving pictures on the screen to act out the sentences in the text. However, EMBRACE presents the same level of text to all users, and it is limited in its ability to provide error feedback, as it can only determine whether a user action is right or wrong. EMBRACE could help readers learn more effectively if it personalized its instruction with texts that fit their current reading level and feedback that addresses ways to correct their mistakes. Improvements were made to the system by applying design principles of intelligent tutoring systems (ITSs). The new system added features to track the student’s reading comprehension skills, including vocabulary, syntax, and usability, based on various user actions, as well as features to adapt text complexity and provide more specific error feedback using the skills. A pilot study was conducted with 7 non-ELL students to evaluate the functionality and effectiveness of these features. The results revealed both strengths and weaknesses of the ITS. While skill updates appeared most accurate when users made particular kinds of vocabulary and syntax errors, it was not able to correctly identify other kinds of syntax errors or provide feedback when skill values became too high. Additionally, vocabulary error feedback and adapting the complexity of syntax were helpful, but syntax error feedback and adapting the complexity of vocabulary were not as helpful. Overall, children enjoy using EMBRACE, and building an intelligent tutoring system into the application presents a promising approach to make reading a both fun and effective experience.
ContributorsWong, Audrey (Author) / Walker, Erin (Thesis advisor) / Nelson, Brian (Committee member) / Glenberg, Arthur (Committee member) / Arizona State University (Publisher)
Created2017
134533-Thumbnail Image.png
Description
Learning to program is no easy task, and many students experience their first programming during their university education. Unfortunately, programming classes have a large number of students enrolled, so it is nearly impossible for professors to associate with the students at an individual level and provide the personal attention each

Learning to program is no easy task, and many students experience their first programming during their university education. Unfortunately, programming classes have a large number of students enrolled, so it is nearly impossible for professors to associate with the students at an individual level and provide the personal attention each student needs. This project aims to provide professors with a tool to quickly respond to the current understanding of the students. This web-based application gives professors the control to quickly ask Java programming questions, and the ability to see the aggregate data on how many of the students have successfully completed the assigned questions. With this system, the students are provided with extra programming practice in a controlled environment, and if there is an error in their program, the system will provide feedback describing what the error means and what steps the student can take to fix it.
ContributorsVillela, Daniel Linus (Author) / Kobayashi, Yoshihiro (Thesis director) / Nelson, Brian (Committee member) / Hsiao, Sharon (Committee member) / Computing and Informatics Program (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134971-Thumbnail Image.png
Description
This thesis investigates students' learning behaviors through their interaction with an educational technology, Web Programming Grading Assistant. The technology was developed to facilitate the grading of paper-based examinations in large lecture-based classrooms and to provide richer and more meaningful feedback to students. A classroom study was designed and data was

This thesis investigates students' learning behaviors through their interaction with an educational technology, Web Programming Grading Assistant. The technology was developed to facilitate the grading of paper-based examinations in large lecture-based classrooms and to provide richer and more meaningful feedback to students. A classroom study was designed and data was gathered from an undergraduate computer-programming course in the fall of 2016. Analysis of the data revealed that there was a negative correlation between time lag of first review attempt and performance. A survey was developed and disseminated that gave insight into how students felt about the technology and what they normally do to study for programming exams. In conclusion, the knowledge gained in this study aids in the quest to better educate students in computer programming in large in-person classrooms.
ContributorsMurphy, Hannah (Author) / Hsiao, Ihan (Thesis director) / Nelson, Brian (Committee member) / School of Computing, Informatics, and Decision Systems Engineering (Contributor) / Department of Supply Chain Management (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134100-Thumbnail Image.png
Description
Can a skill taught in a virtual environment be utilized in the physical world? This idea is explored by creating a Virtual Reality game for the HTC Vive to teach users how to play the drums. The game focuses on developing the user's muscle memory, improving the user's ability to

Can a skill taught in a virtual environment be utilized in the physical world? This idea is explored by creating a Virtual Reality game for the HTC Vive to teach users how to play the drums. The game focuses on developing the user's muscle memory, improving the user's ability to play music as they hear it in their head, and refining the user's sense of rhythm. Several different features were included to achieve this such as a score, different levels, a demo feature, and a metronome. The game was tested for its ability to teach and for its overall enjoyability by using a small sample group. Most participants of the sample group noted that they felt as if their sense of rhythm and drumming skill level would improve by playing the game. Through the findings of this project, it can be concluded that while it should not be considered as a complete replacement for traditional instruction, a virtual environment can be successfully used as a learning aid and practicing tool.
ContributorsDinapoli, Allison (Co-author) / Tuznik, Richard (Co-author) / Kobayashi, Yoshihiro (Thesis director) / Nelson, Brian (Committee member) / Computer Science and Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Computing and Informatics Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
156227-Thumbnail Image.png
Description
The problem under investigation was to determine if a specific outline-style learning guide, called a Learning Agenda (LA), can improve a college algebra learning environment and if learner control can reduce the cognitive effort associated with note-taking in this instance. The 192 participants were volunteers from 47 different college

The problem under investigation was to determine if a specific outline-style learning guide, called a Learning Agenda (LA), can improve a college algebra learning environment and if learner control can reduce the cognitive effort associated with note-taking in this instance. The 192 participants were volunteers from 47 different college algebra and pre-calculus classes at a community college in the southwestern United States. The approximate demographics of this college as of the academic year 2016 – 2017 are as follows: 53% women, 47% men; 61% ages 24 and under, 39% 25 and over; 43% Hispanic/Latino, 40% White, 7% other. Participants listened to an approximately 9-minute video lecture on solving a logarithmic equation. There were four dependent variables: encoding as measured by a posttest – pretest difference, perceived cognitive effort, attitude, and notes-quality/quantity. The perceived cognitive effort was measured by a self-reported questionnaire. The attitude was measured by an attitude survey. The note-quality/quantity measure included three sub-measures: expected mathematical expressions, expected phrases, and a total word count. There were two independent factors: note-taking method and learner control. The note-taking method had three levels: the Learning Agenda (LA), unguided note-taking (Usual), and no notes taken. The learner control factor had two levels: pausing allowed and pausing not allowed. The LA resulted in significantly improved notes on all three sub-measures (adjusted R2 = .298). There was a significant main effect of learner control on perceived cognitive effort with higher perceived cognitive effort occurring when pausing was not allowed and notes were taken. There was a significant interaction effect of the two factors on the attitude survey measure. The trend toward an improved attitude in both of the note-taking levels of the note-taking factor when pause was allowed was reversed in the no notes level when pausing was allowed. While significant encoding did occur as measured by the posttest – pretest difference (Cohen’s d = 1.81), this measure did not reliably vary across the levels of either the note-taking method factor or the learner control factor in this study. Interpretations were in terms of cognitive load management, split-attention, instructional design, and note-taking as a sense-making opportunity.
ContributorsTarr, Julie Charlotte (Author) / Nelson, Brian (Thesis advisor) / Atkinson, Robert (Committee member) / Savenye, Wilhelmina (Committee member) / Arizona State University (Publisher)
Created2018
156275-Thumbnail Image.png
Description
The purpose of this study was to investigate the effects of static pedagogical agents (included and excluded) and gamification practice (included and excluded) on vocabulary acquisition and perceptions of cognitive load by junior high students who studied Navajo

language via computer-based instructional program. A total of 153 students attending a junior

The purpose of this study was to investigate the effects of static pedagogical agents (included and excluded) and gamification practice (included and excluded) on vocabulary acquisition and perceptions of cognitive load by junior high students who studied Navajo

language via computer-based instructional program. A total of 153 students attending a junior high school in the southwestern United States were the participants for this study. Prior to the beginning of the study, students were randomly assigned to one of four

treatment groups who used a Navajo language computer-based program that contained a combination of static pedagogical agent (included and excluded) and gamification practice (included and excluded). There were two criterion measures in this study, a

vocabulary acquisition posttest and a survey designed both to measure students’ attitudes toward the program and to measure cognitive load. Anecdotal observations of students’ interactions were also examined.

Results indicated that there were no significant differences in posttest scores among treatment conditions; students were, however, generally successful in learning the Navajo vocabulary terms. Participants also reported positive attitudes toward the Navajo

language content and gamification practice and expressed a desire to see additional content and games during activities of this type. These findings provide evidence of the impact that computer-based training may have in teaching students an indigenous second

language. Furthermore, students seem to enjoy this type of language learning program. Many also indicated that, while static agent was not mentioned, gamification practice may enhance students’ attitudes in such instruction and is an area for future research.

Language learning programs could include a variety of gamification practice activities to assist student to learn new vocabulary. Further research is needed to study motivation and cognitive load in Navajo language computer-based training.
ContributorsShurley, Kenneth Alessandro (Author) / Savenye, Wilhelmina C (Thesis advisor) / Atkinson, Robert (Committee member) / Nelson, Brian (Committee member) / Arizona State University (Publisher)
Created2018
156508-Thumbnail Image.png
Description
A recorded tutorial dialogue can produce positive learning gains, when observed and used to promote discussion between a pair of learners; however, this same effect does not typically occur when an leaner observes a tutorial dialogue by himself or herself. One potential approach to enhancing learning in the latter situation

A recorded tutorial dialogue can produce positive learning gains, when observed and used to promote discussion between a pair of learners; however, this same effect does not typically occur when an leaner observes a tutorial dialogue by himself or herself. One potential approach to enhancing learning in the latter situation is by incorporating self-explanation prompts, a proven technique for encouraging students to engage in active learning and attend to the material in a meaningful way. This study examined whether learning from observing recorded tutorial dialogues could be made more effective by adding self-explanation prompts in computer-based learning environment. The research questions in this two-experiment study were (a) Do self-explanation prompts help support student learning while watching a recorded dialogue? and (b) Does collaboratively observing (in dyads) a tutorial dialogue with self-explanation prompts help support student learning while watching a recorded dialogue? In Experiment 1, 66 participants were randomly assigned as individuals to a physics lesson (a) with self-explanation prompts (Condition 1) or (b) without self-explanation prompts (Condition 2). In Experiment 2, 20 participants were randomly assigned in 10 pairs to the same physics lesson (a) with self-explanation prompts (Condition 1) or (b) without self-explanation prompts (Condition 2). Pretests and posttests were administered, as well as other surveys that measured motivation and system usability. Although supplemental analyses showed some significant differences among individual scale items or factors, neither primary results for Experiment 1 or Experiment 2 were significant for changes in posttest scores from pretest scores for learning, motivation, or system usability assessments.
ContributorsWright, Kyle Matthew (Author) / Atkinson, Robert K (Thesis advisor) / Savenye, Wilhelmina (Committee member) / Nelson, Brian (Committee member) / Arizona State University (Publisher)
Created2018
156896-Thumbnail Image.png
Description
The purpose of this study was to investigate the impact of immersion on knowledge, cognitive load, and presence in a simulation designed to deliver a lesson on science lab safety training. 108 participants were randomly assigned to one of three conditions: high immersion (played an interactive simulation about lab safety

The purpose of this study was to investigate the impact of immersion on knowledge, cognitive load, and presence in a simulation designed to deliver a lesson on science lab safety training. 108 participants were randomly assigned to one of three conditions: high immersion (played an interactive simulation about lab safety in a VR headset), medium immersion (played the same interactive simulation on the computer), or low immersion (watched a video and read about lab safety procedures). Participants completed a pretest, a science lab safety training, a posttest (same as the pretest), a questionnaire with subjective presence questions, and a questionnaire with subjective cognitive load questions. Participants were again asked to complete a follow-up test (same as the pretest and posttest) a week later.

The results revealed three significant findings:

(a) Participants in the high and medium immersion conditions had significantly higher knowledge scores at posttest and follow-up than their peers in the low immersion condition,

(b) Participants in the high and medium immersion conditions reported higher presence scores than participants in the low immersion conditions.

(c) Correlation coefficients suggested that the higher the immersion and presence, the higher the knowledge scores are at posttest and follow-up.

In addition, multiple hierarchical linear regression models were conducted out of which one was significant.
ContributorsSavvides, Philippos (Author) / Nelson, Brian (Thesis advisor) / Johnson-Glenberg, Mina (Committee member) / Atkinson, Robert (Committee member) / Arizona State University (Publisher)
Created2018
133515-Thumbnail Image.png
Description
Natural Language Processing and Virtual Reality are hot topics in the present. How can we synthesize these together in order to make a cohesive experience? The game focuses on users using vocal commands, building structures, and memorizing spatial objects. In order to get proper vocal commands, the IBM Watson API

Natural Language Processing and Virtual Reality are hot topics in the present. How can we synthesize these together in order to make a cohesive experience? The game focuses on users using vocal commands, building structures, and memorizing spatial objects. In order to get proper vocal commands, the IBM Watson API for Natural Language Processing was incorporated into our game system. User experience elements like gestures, UI color change, and images were used to help guide users in memorizing and building structures. The process to create these elements were streamlined through the VRTK library in Unity. The game has two segments. The first segment is a tutorial level where the user learns to perform motions and in-game actions. The second segment is a game where the user must correctly create a structure by utilizing vocal commands and spatial recognition. A standardized usability test, System Usability Scale, was used to evaluate the effectiveness of the game. A survey was also created in order to evaluate a more descriptive user opinion. Overall, users gave a positive score on the System Usability Scale and slightly positive reviews in the custom survey.
ContributorsOrtega, Excel (Co-author) / Ryan, Alexander (Co-author) / Kobayashi, Yoshihiro (Thesis director) / Nelson, Brian (Committee member) / Computing and Informatics Program (Contributor) / School of Art (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
One of the core components of many video games is their artificial intelligence. Through AI, a game can tell stories, generate challenges, and create encounters for the player to overcome. Even though AI has continued to advance through the implementation of neural networks and machine learning, game AI tends to

One of the core components of many video games is their artificial intelligence. Through AI, a game can tell stories, generate challenges, and create encounters for the player to overcome. Even though AI has continued to advance through the implementation of neural networks and machine learning, game AI tends to implement a series of states or decisions instead to give the illusion of intelligence. Despite this limitation, games can still generate a wide range of experiences for the player. The Hybrid Game AI Framework is an AI system that combines the benefits of two commonly used approaches to developing game AI: Behavior Trees and Finite State Machines. Developed in the Unity Game Engine and the C# programming language, this AI Framework represents the research that went into studying modern approaches to game AI and my own attempt at implementing the techniques learned. Object-oriented programming concepts such as inheritance, abstraction, and low coupling are utilized with the intent to create game AI that's easy to implement and expand upon. The final goal was to create a flexible yet structured AI data structure while also minimizing drawbacks by combining Behavior Trees and Finite State Machines.
ContributorsRamirez Cordero, Erick Alberto (Author) / Kobayashi, Yoshihiro (Thesis director) / Nelson, Brian (Committee member) / Computer Science and Engineering Program (Contributor) / Computing and Informatics Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
132028-Thumbnail Image.png
Description
This project is to design an idle game and evaluate players’ enjoyment corresponding to
different currency rates. In the game, the player can control a group of heroes against another
set of heroes. In this project, two different currency rates are examined. The player can get
money more easily in a lower currency

This project is to design an idle game and evaluate players’ enjoyment corresponding to
different currency rates. In the game, the player can control a group of heroes against another
set of heroes. In this project, two different currency rates are examined. The player can get
money more easily in a lower currency rate. Two groups of players are formed, and there are 5
players in group A and group B respectively. Players in group A are assigned to play the idle
game with a higher currency rate and players in group B are assigned to play the game with a
lower currency rate. The idle game is created by using Unity and C# language. The feedback
from the players is collected by asking them to finish an 11-question survey. The analysis is
based on the game’s currency rate and survey results. It is concluded that a higher currency rate
lowers players’ enjoyment of the idle game.
ContributorsYang, Yijian (Author) / Kobayashi, Yoshihiro (Thesis director) / Nelson, Brian (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
131675-Thumbnail Image.png
Description
The Migration Framework and Simulator is a combination of C# framework / library and Unity simulation tool used for studying basic migration patterns across the US. Users interact with the
Unity simulation tool by implementing political policies or adjusting values via sliders, buttons, etc., which will alter the values in the

The Migration Framework and Simulator is a combination of C# framework / library and Unity simulation tool used for studying basic migration patterns across the US. Users interact with the
Unity simulation tool by implementing political policies or adjusting values via sliders, buttons, etc., which will alter the values in the framework. The user can then use the simulation interface to view different estimated population values for categories of people, such as regional differences, education levels, and more.
ContributorsLarsen, Joseph (Co-author) / Spangler, Braydon (Co-author) / Kobayashi, Yoshihiro (Thesis director) / Nelson, Brian (Committee member) / Computing and Informatics Program (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
148262-Thumbnail Image.png
Description

This thesis is based on bringing together three different components: non-Euclidean geometric worlds, virtual reality, and environmental puzzles in video games. While all three exist in their own right in the world of video games, as well as combined in pairs, there are virtually no examples of all three together.

This thesis is based on bringing together three different components: non-Euclidean geometric worlds, virtual reality, and environmental puzzles in video games. While all three exist in their own right in the world of video games, as well as combined in pairs, there are virtually no examples of all three together. Non-Euclidean environmental puzzle games have existed for around 10 years in various forms, short environmental puzzle games in virtual reality have come into existence in around the past five years, and non-Euclidean virtual reality exists mainly as non-video game short demos from the past few years. This project seeks to be able to bring these components together to create a proof of concept for how a game like this should function, particularly the integration of non-Euclidean virtual reality in the context of a video game. To do this, a Unity package which uses a custom system for creating worlds in a non-Euclidean way rather than Unity’s built-in components such as for transforms, collisions, and rendering was used. This was used in conjunction with the SteamVR implementation with Unity to create a cohesive and immersive player experience.

ContributorsVerhagen, Daniel William (Author) / Kobayashi, Yoshihiro (Thesis director) / Nelson, Brian (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
171562-Thumbnail Image.png
Description
Distributed self-assessments and reflections empower learners to take the lead on their knowledge gaining evaluation. Both provide essential elements for practice and self-regulation in learning settings. Nowadays, many sources for practice opportunities are made available to the learners, especially in the Computer Science (CS) and programming domain. They may choose

Distributed self-assessments and reflections empower learners to take the lead on their knowledge gaining evaluation. Both provide essential elements for practice and self-regulation in learning settings. Nowadays, many sources for practice opportunities are made available to the learners, especially in the Computer Science (CS) and programming domain. They may choose to utilize these opportunities to self-assess their learning progress and practice their skill. My objective in this thesis is to understand to what extent self-assess process can impact novice programmers learning and what advanced learning technologies can I provide to enhance the learner’s outcome and the progress. In this dissertation, I conducted a series of studies to investigate learning analytics and students’ behaviors in working on self-assessments and reflection opportunities. To enable this objective, I designed a personalized learning platform named QuizIT that provides daily quizzes to support learners in the computer science domain. QuizIT adopts an Open Social Student Model (OSSM) that supports personalized learning and serves as a self-assessment system. It aims to ignite self-regulating behavior and engage students in the self-assessment and reflective procedure. I designed and integrated the personalized practice recommender to the platform to investigate the self-assessment process. I also evaluated the self-assessment behavioral trails as a predictor to the students’ performance. The statistical indicators suggested that the distributed reflections were associated with the learner's performance. I proceeded to address whether distributed reflections enable self-regulating behavior and lead to better learning in CS introductory courses. From the student interactions with the system, I found distinct behavioral patterns that showed early signs of the learners' performance trajectory. The utilization of the personalized recommender improved the student’s engagement and performance in the self-assessment procedure. When I focused on enhancing reflections impact during self-assessment sessions through weekly opportunities, the learners in the CS domain showed better self-regulating learning behavior when utilizing those opportunities. The weekly reflections provided by the learners were able to capture more reflective features than the daily opportunities. Overall, this dissertation demonstrates the effectiveness of the learning technologies, including adaptive recommender and reflection, to support novice programming learners and their self-assessing processes.
ContributorsAlzaid, Mohammed (Author) / Hsiao, Ihan (Thesis advisor) / Davulcu, Hasan (Thesis advisor) / VanLehn, Kurt (Committee member) / Nelson, Brian (Committee member) / Bansal, Srividya (Committee member) / Arizona State University (Publisher)
Created2022
171390-Thumbnail Image.png
Description
Research suggests there is no significant difference in outcomes for online learners and on-campus learners. Several decades of online learning have also consistently demonstrated online students are less likely to persist than those students attending on campus. The Community of Inquiry (CoI) framework describes social presence, teaching presence, and cognitive

Research suggests there is no significant difference in outcomes for online learners and on-campus learners. Several decades of online learning have also consistently demonstrated online students are less likely to persist than those students attending on campus. The Community of Inquiry (CoI) framework describes social presence, teaching presence, and cognitive presence as components of a quality online learning experience, and research links these three constructs to student retention. Using the lens of the CoI framework, this mixed methods action research study sought to increase social presence and teaching presence in asynchronous online courses at Davenport University using embedded video feedback mechanisms, in support of student persistence and retention. The Community of Inquiry survey instrument was used to quantitatively measure the changes in social presence and teaching presence between courses with and without the video feedback mechanisms. Qualitative research interviews were conducted to probe for meaning and a greater understanding of both student and instructor experiences in the courses. Results of the study indicated small but significant gains in teaching presence, but other quantitative measures showed no changes with the introduction of the videos. Qualitative analysis suggests that students who watched the instructor videos reported higher levels of teaching presence for several subconstructs of teaching presence and social presence. However, the qualitative analysis also suggested that many students did not watch the instructor videos, and thus did not benefit from any increased presence. Student discussion response videos yielded similar results qualitatively, with benefits demonstrated by those students who watched the videos but none by those who abstained.
ContributorsMiller, Brian John-Suydam (Author) / Salik, Steve (Thesis advisor) / Nelson, Brian (Committee member) / Nyambane, Gerald (Committee member) / Arizona State University (Publisher)
Created2022
165485-Thumbnail Image.png
Description
Typical programming languages involve complex syntax and structure which can be daunting to first-time programmers. Particularly, elementary-age students may not be able to understand the relationship between a mathematical-looking program and its output. Thus, I created Engram, which teaches both English syntax as well as a version of typical functional

Typical programming languages involve complex syntax and structure which can be daunting to first-time programmers. Particularly, elementary-age students may not be able to understand the relationship between a mathematical-looking program and its output. Thus, I created Engram, which teaches both English syntax as well as a version of typical functional programming language syntax. Young English speakers can learn Engram to familiarize themselves with simple English sentence structure and critical programming concepts. This project has three parts: a parser & compiler, an Integrated Developer Environment (IDE) for the compiler, and lesson plans. The lexer, parser, and compiler were created using the C++ programming language. The IDE was created using C#, .NET Framework, and Windows Forms.
ContributorsCohen, Jacob (Author) / Burger, Kevin (Thesis director) / Nelson, Brian (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
187675-Thumbnail Image.png
Description
Mentoring programs are not uncommon. In fact, they are more common than we think. Most mentoring programs and/or mentorship opportunities are informal and happen daily. While mentorship programs are common, some programs, specifically Pre-Pharmacy related, are overlooked. The lack of formalized opportunities impacts prospective students’ understanding of the profession and

Mentoring programs are not uncommon. In fact, they are more common than we think. Most mentoring programs and/or mentorship opportunities are informal and happen daily. While mentorship programs are common, some programs, specifically Pre-Pharmacy related, are overlooked. The lack of formalized opportunities impacts prospective students’ understanding of the profession and connection-building and limits accessibility to resources. This study explored the role of participation in the Mentoring Aspiring Pre-Pharmacy Mentorship Programs (MAPPS) on the mentees' self-efficacy, belonging, and decision to pursue pharmacy. I conducted this four-week study at UC San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences (SSPPS) in collaboration with the undergraduate campus. To support self-efficacy, belonging, and the decision to pursue pharmacy, MAPPS incorporated didactic and non-didactic activities, group conversations, reflections, and much more. To foster belonging, mentees were provided opportunities to participate in Pharmacy and Faculty meet and greet events, choose their mentor groups, and engage with one another. To develop self-efficacy, mentees were encouraged weekly to step outside their comfort zone by completing reflection activities that challenged them to learn more about the profession and engage with their mentors. The theoretical perspectives that guided this research project were the identity theory, self-efficacy theory, and sense of belonging. Furthermore, I used the parallel mixed design approach, which allowed me to use a mix of quantitative and qualitative methods simultaneously or with some time-lapse. The data collected in this study showed that participation in the MAPPS mentorship program heightened the mentees' sense of belonging, developed a deeper understanding of the profession, and resulted in the mentee feeling empowered to pursue the profession.
ContributorsAdibi, Sahar (Author) / Nelson, Brian (Thesis advisor) / Smith, Stephanie (Committee member) / Patel, Nimish (Committee member) / Arizona State University (Publisher)
Created2023
187560-Thumbnail Image.png
Description
College athletes experience college in a way that is different than their non-athlete peers. Practices, travel time, study hall, and other athletic obligations place strenuous demands on the lives and time of college athletes. As a result, college athletes have less flexible time and are often unable to engage in

College athletes experience college in a way that is different than their non-athlete peers. Practices, travel time, study hall, and other athletic obligations place strenuous demands on the lives and time of college athletes. As a result, college athletes have less flexible time and are often unable to engage in educationally purposeful activities including high impact practices, that promote their personal growth and development. Using Astin’s Student Involvement Theory and Rendon’s Validation Theory as frameworks, this mixed methods study examined the impact that participating in a high-impact practice activity had on the personal growth and development of college athletes. To examine how personal growth and development was impacted by participation in a high impact practice activity, National Collegiate Athletic Association (NCAA) Division I college athletes at the University of California, Riverside (UC Riverside) participated in the Leadership for Social Change seminar. To measure personal growth and development, the participants completed the Personal Growth Initiative Scale - II (PGIS-II) as a pre- and post-seminar survey. A sample of participants was also interviewed after completing the seminar to further explain the survey results. The results of the study suggest that seminar participation led to personal growth and development for college athletes. Institutions and athletic departments should promote college athletes’ personal growth and development by incorporating high impact practices into the college athlete experience.
ContributorsRoberts, Rena M. (Author) / Nelson, Brian (Thesis advisor) / Comeaux, Eddie (Committee member) / Smith, Stephanie (Committee member) / Arizona State University (Publisher)
Created2023
187592-Thumbnail Image.png
Description
As colleges and universities across the United States continue to grapple with enrollment challenges, many are embracing the concept of customer service as way to improve the student experience and positively impact retention. However, as many institutions of higher education begin to evaluate their own organizational structure, the notion of

As colleges and universities across the United States continue to grapple with enrollment challenges, many are embracing the concept of customer service as way to improve the student experience and positively impact retention. However, as many institutions of higher education begin to evaluate their own organizational structure, the notion of combining cross-functional departments is one strategy that more intuitions are exploring in an effort to improve communication, collaboration, and efficiencies. This qualitative dissertation study sought to understand the ways in which communication challenges for disconnected, yet cross-functional, departments can impact the ability of individual employees to properly execute the core functions of their individual positions. Utilizing semi-structured interviews, I explored how two previously disconnected departments interacted with each other on a daily basis, including the understanding of communication distribution. Employees were then physically relocated into one physical unified student services department, called Student Financial Services, and provided a structured schedule of professional development and cross-training activities. Participants were then interviewed about their experiences after the transition was completed. The four major themes that emerged through the data analysis were: improved communications equal improved customer service, enhanced professional development identifies and minimizes gaps, cross training leads to innovation, and policies and procedures are best developed by those within the organization.
ContributorsDiBartolomeo, Michael Robert (Author) / Nelson, Brian (Thesis advisor) / Smith, Stephanie (Committee member) / Romano, Christopher (Committee member) / Arizona State University (Publisher)
Created2023
187632-Thumbnail Image.png
Description
Integrating agent-based models (ABMs) has been a popular approach for teaching emergent science concepts. However, students continue to find it difficult to explain the emergent process of natural selection. This study adopted an ontological framework–the Pattern, Agents, Interactions, Relations, and Causality (PAIR-C)–to guide the design of learning modules. This pre-posttest

Integrating agent-based models (ABMs) has been a popular approach for teaching emergent science concepts. However, students continue to find it difficult to explain the emergent process of natural selection. This study adopted an ontological framework–the Pattern, Agents, Interactions, Relations, and Causality (PAIR-C)–to guide the design of learning modules. This pre-posttest experimental study examines the effects of the PAIR-C module versus the Regular module on fostering students’ deep understanding of natural selection. Results show that students in the PAIR-C intervention group performed better in answering deep questions assessing the understanding of inter-level causal relationships than those in the Regular control group. Although students in both groups did not show significantly improved abilities in explaining the natural selection process for other contexts or significant differences in their abilities to explain other emergent phenomena, students in the intervention group demonstrated system-thinking perspectives and fewer misconceptions in their expressions compared to the control group. A close analysis of student misconceptions consolidates that the intervention group demonstrated drastically fewer categories and numbers of misconceptions while those in the control group did not show such drastic changes before and after the study. To precisely address misconceptions and further improve students’ learning outcomes, Epistemic Network Analysis was adopted to capture students’ misconception characteristics by examining the co-occurrences of different misconception categories as well as the relationship between misconceptions and PAIR-C features. The results of student learning outcomes and misconception characteristics collectively provide directions for improving the instructional design of the PAIR-C module. Furthermore, findings on student engagement levels during learning can also inform future design efforts. Overall, this project sheds light on applying an innovative framework to designing effective learning modules to teach emergent science concepts.
ContributorsSu, Man (Author) / Chi, Michelene (Thesis advisor) / Nelson, Brian (Committee member) / Zheng, Yi (Committee member) / Arizona State University (Publisher)
Created2023
187545-Thumbnail Image.png
Description
Second Language Learners face a unique set of challenges when it comes to the learning process. This dissertation study specifically focuses on those challenges and how to train teachers working within a co-teaching model in an international school in Bangkok, Thailand. Using the ideology proposed by Stephen Krashen

Second Language Learners face a unique set of challenges when it comes to the learning process. This dissertation study specifically focuses on those challenges and how to train teachers working within a co-teaching model in an international school in Bangkok, Thailand. Using the ideology proposed by Stephen Krashen as a part of his Input Hypothesis Theory and framing the results through the lens of Albert Bandura’s Self-Efficacy Theory, I studied the effects of a professional development model that focused on phonemic awareness, comprehensible input, and a collaborative teaching approach. Using this as my methodological framework, I found that teachers were able to improve their teaching skills and become more confident in their approach when provided with training that gave them specific responsibilities to address within the process of teaching. Through the use of pre-post surveys, interviews, and observations, I was able to examine how resource sharing and collaborative lesson planning allowed teachers to be more confident in their approach to teaching and their abilities to support students that were attending an international school that was a part of one of the most successful and academically rigorous networks of schools in the United States of America. It was through an intentional designation of tasks and a collaborative training approach that teachers were not only able to better understand the needs of their students but also find ways to work with and learn from one another in the training process. Ultimately, I discovered that allowing teachers to share resources and best practices allowed them to build quality and far more engaging lessons for their students.
ContributorsThies, Elizabeth Ellen (Author) / Nelson, Brian (Thesis advisor) / Wolf, Leigh (Committee member) / Leyba, Ashley (Committee member) / Arizona State University (Publisher)
Created2023