Matching Items (36)
154832-Thumbnail Image.png
Description
Systems biology studies complex biological systems. It is an interdisciplinary field, with biologists working with non-biologists such as computer scientists, engineers, chemists, and mathematicians to address research problems applying systems’ perspectives. How these different researchers and their disciplines differently contributed to the advancement of this field over time is a

Systems biology studies complex biological systems. It is an interdisciplinary field, with biologists working with non-biologists such as computer scientists, engineers, chemists, and mathematicians to address research problems applying systems’ perspectives. How these different researchers and their disciplines differently contributed to the advancement of this field over time is a question worth examining. Did systems biology become a systems-oriented science or a biology-oriented science from 1992 to 2013?

This project utilized computational tools to analyze large data sets and interpreted the results from historical and philosophical perspectives. Tools deployed were derived from scientometrics, corpus linguistics, text-based analysis, network analysis, and GIS analysis to analyze more than 9000 articles (metadata and text) on systems biology. The application of these tools to a HPS project represents a novel approach.

The dissertation shows that systems biology has transitioned from a more mathematical, computational, and engineering-oriented discipline focusing on modeling to a more biology-oriented discipline that uses modeling as a means to address real biological problems. Also, the results show that bioengineering and medical research has increased within systems biology. This is reflected in the increase of the centrality of biology-related concepts such as cancer, over time. The dissertation also compares the development of systems biology in China with some other parts of the world, and reveals regional differences, such as a unique trajectory of systems biology in China related to a focus on traditional Chinese medicine.

This dissertation adds to the historiography of modern biology where few studies have focused on systems biology compared with the history of molecular biology and evolutionary biology.
ContributorsZou, Yawen (Author) / Laubichler, Manfred (Thesis advisor) / Maienschein, Jane (Thesis advisor) / Creath, Richard (Committee member) / Ellison, Karin (Committee member) / Newfeld, Stuart (Committee member) / Arizona State University (Publisher)
Created2016
154280-Thumbnail Image.png
Description
The study of wasp societies (family Vespidae) has played a central role in advancing our knowledge of why social life evolves and how it functions. This dissertation asks: How have scientists generated and evaluated new concepts and theories about social life and its evolution by investigating wasp societies? It addresses

The study of wasp societies (family Vespidae) has played a central role in advancing our knowledge of why social life evolves and how it functions. This dissertation asks: How have scientists generated and evaluated new concepts and theories about social life and its evolution by investigating wasp societies? It addresses this question both from a narrative/historical and from a reflective/epistemological perspective. The historical narratives reconstruct the investigative pathways of the Italian entomologist Leo Pardi (1915-1990) and the British evolutionary biologist William D. Hamilton (1936-2000). The works of these two scientists represent respectively the beginning of our current understanding of immediate and evolutionary causes of social life. Chapter 1 shows how Pardi, in the 1940s, generated a conceptual framework to explain how wasp colonies function in terms of social and reproductive dominance. Chapter 2 shows how Hamilton, in the 1960s, attempted to evaluate his own theory of inclusive fitness by investigating social wasps. The epistemological reflections revolve around the idea of investigative framework for theory evaluation. Chapter 3 draws on the analysis of important studies on social wasps from the 1960s and 1970s and provides an account of theory evaluation in the form of an investigative framework. The framework shows how inferences from empirical data (bottom-up) and inferences from the theory (top-down) inform one another in the generation of hypotheses, predictions and statements about phenomena of social evolution. It provides an alternative to existing philosophical accounts of scientific inquiry and theory evaluation, which keep a strong, hierarchical distinction between inferences from the theory and inferences from the data. The historical narratives in this dissertation show that important scientists have advanced our knowledge of complex biological phenomena by constantly interweaving empirical, conceptual, and theoretical work. The epistemological reflections argue that we need holistic frameworks that account for how multiple scientific practices synergistically contribute to advance our knowledge of complex phenomena. Both narratives and reflections aim to inspire and inform future work in social evolution capitalizing on lessons learnt from the past.
ContributorsCaniglia, Guido (Author) / Laubichler, Manfred (Thesis advisor) / Maienschein, Jane (Thesis advisor) / Creath, Richard (Committee member) / Mitchell, Sandra (Committee member) / Arizona State University (Publisher)
Created2016
155366-Thumbnail Image.png
Description
This dissertation begins to lay out a small slice of the history of morphological research, and how it has changed, from the late 19th through the close of the 20th century. Investigators using different methods, addressing different questions, holding different assumptions, and coming from different research fields have pursued morphological

This dissertation begins to lay out a small slice of the history of morphological research, and how it has changed, from the late 19th through the close of the 20th century. Investigators using different methods, addressing different questions, holding different assumptions, and coming from different research fields have pursued morphological research programs, i.e. research programs that explore the process of changing form. Subsequently, the way in which investigators have pursued and understood morphology has witnessed significant changes from the 19th century to modern day research. In order to trace this shifting history of morphology, I have selected a particular organ, teeth, and traced a tendril of research on the dentition beginning in the late 19th century and ending at the year 2000. But even focusing on teeth would be impossible; the scope of research on this organ is far too vast. Instead, I narrow this dissertation to investigation of research on a particular problem: explaining mammalian tooth morphology. How researchers have investigated mammalian tooth morphology and what counts as an explanation changed dramatically during this period.
ContributorsMacCord, Katherine (Author) / Maienschein, Jane (Thesis advisor) / Laubichler, Manfred (Thesis advisor) / Laplane, Lucie (Committee member) / Kimbel, William (Committee member) / Creath, Richard (Committee member) / Hurlbut, Benjamin (Committee member) / Arizona State University (Publisher)
Created2017
147877-Thumbnail Image.png
Description

Mentions of diversity have become an essential part of every university and medical school’s mission statement. Yet, with such an emphasis on diversity, there is an evident absence of<br/>cultural competence education in the curricula of medical education. There is no clear answer of<br/>what is expected of physicians and no direct

Mentions of diversity have become an essential part of every university and medical school’s mission statement. Yet, with such an emphasis on diversity, there is an evident absence of<br/>cultural competence education in the curricula of medical education. There is no clear answer of<br/>what is expected of physicians and no direct transitions for the different stages of medical<br/>training when it comes to cultural competence education. This is a vital issue, as there is a close<br/>relationship between the quality of patient care, patient adherence, and medical providers’ levels<br/>of cultural competence. This research analyzes the extent that cultural competence is taught at<br/>various points of the medical education cycle through a data analysis of an IRB approved<br/>questionnaire given to students within the medical education cycle and their value versus<br/>exposure of cultural competence.

ContributorsIbrahim, Aseel (Author) / Laubichler, Manfred (Thesis director) / Vélez-Ibañez, Carlos (Committee member) / School of International Letters and Cultures (Contributor) / School of Transborder Studies (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
141461-Thumbnail Image.png
Description
In the digital humanities, there is a constant need to turn images and PDF files into plain text to apply analyses such as topic modelling, named entity recognition, and other techniques. However, although there exist different solutions to extract text embedded in PDF files or run OCR on images, they

In the digital humanities, there is a constant need to turn images and PDF files into plain text to apply analyses such as topic modelling, named entity recognition, and other techniques. However, although there exist different solutions to extract text embedded in PDF files or run OCR on images, they typically require additional training (for example, scholars have to learn how to use the command line) or are difficult to automate without programming skills. The Giles Ecosystem is a distributed system based on Apache Kafka that allows users to upload documents for text and image extraction. The system components are implemented using Java and the Spring Framework and are available under an Open Source license on GitHub (https://github.com/diging/).
ContributorsLessios-Damerow, Julia (Contributor) / Peirson, Erick (Contributor) / Laubichler, Manfred (Contributor) / ASU-SFI Center for Biosocial Complex Systems (Contributor)
Created2017-09-28
141464-Thumbnail Image.png
Description

In a recent opinion piece, Denis Duboule has claimed that the increasing shift towards systems biology is driving evolutionary and developmental biology apart, and that a true reunification of these two disciplines within the framework of evolutionary developmental biology (EvoDevo) may easily take another 100 years. He identifies methodological, epistemological,

In a recent opinion piece, Denis Duboule has claimed that the increasing shift towards systems biology is driving evolutionary and developmental biology apart, and that a true reunification of these two disciplines within the framework of evolutionary developmental biology (EvoDevo) may easily take another 100 years. He identifies methodological, epistemological, and social differences as causes for this supposed separation. Our article provides a contrasting view. We argue that Duboule’s prediction is based on a one-sided understanding of systems biology as a science that is only interested in functional, not evolutionary, aspects of biological processes. Instead, we propose a research program for an evolutionary systems biology, which is based on local exploration of the configuration space in evolving developmental systems. We call this approach—which is based on reverse engineering, simulation, and mathematical analysis—the natural history of configuration space. We discuss a number of illustrative examples that demonstrate the past success of local exploration, as opposed to global mapping, in different biological contexts. We argue that this pragmatic mode of inquiry can be extended and applied to the mathematical analysis of the developmental repertoire and evolutionary potential of evolving developmental mechanisms and that evolutionary systems biology so conceived provides a pragmatic epistemological framework for the EvoDevo synthesis.

ContributorsJaeger, Johannes (Author) / Laubichler, Manfred (Author) / Callebaut, Werner (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-02-17
168385-Thumbnail Image.png
Description
How is knowledge created at the intersections between basic science, biotechnology, and industry? Gene drives are an interesting example, as they combine a long-standing interest with a recent technological breakthrough and a new set of commercial applications. Gene drives are genes engineered such that they are preferentially inherited at a

How is knowledge created at the intersections between basic science, biotechnology, and industry? Gene drives are an interesting example, as they combine a long-standing interest with a recent technological breakthrough and a new set of commercial applications. Gene drives are genes engineered such that they are preferentially inherited at a frequency greater than the typical Mendelian fifty percent ratio. During the historical and conceptual evolution of gene drives beginning in the 1960s, there have been many innovations and publications. Along with that, gene drive science developed considerable public attention, explosion of new scientists, and variation in the way the topic is discussed. It is now time to look at this new organization of science using a systematic approach to characterize the system that has enabled knowledge to grow in this scientific field. This project breaks new ground in how knowledge advances in genetic engineering science, and how scientists understand what a “gene drive” is through analysis of language, communities, and other social factors. In effect, this research will advance multiple fields and enable a deeper understanding of knowledge and complexity. This project documents patterns of publication, collaborative relationships, linguistic variation, innovation, and knowledge expansion. The results of computational analysis provide an in-depth and complete characterization of the structure, dynamics, and evolution of scientific knowledge found in the gene drive technology. Further, time series analysis of the multiple layers of discourse enabled a diachronic connective mapping of collaborative relationships and tracked linguistic variation and change, highlighting where ambiguous language may appear, improving and creating more cohesive scientific language. Overall, depicting the structure, dynamics, and evolution of scientific knowledge during a novel eruption of scientific complexity can shed light on the factors that can lead to: (1) improved scientific communication, (2) reduction of scientific progress, (3) new knowledge, and (4) novel collaborative relationships. Therefore, characterizing the current technological, methodological, and social contexts that can influence scientific knowledge.
ContributorsOToole, Cody Lane (Author) / Laubichler, Manfred (Thesis advisor) / Collins, James P (Committee member) / Simeone, Michael (Committee member) / Evans, James (Committee member) / Arizona State University (Publisher)
Created2021
Description
Scientific researchers have studied microorganisms since the emergence of the single lens microscope in the 17th century. Since then, researchers designed and published many thousands of images to record and share their observations, including hand-drawn diagrams, photomicrographs, and photographs. Images shaped how researchers conceived of microorganisms, their concepts of microorganisms

Scientific researchers have studied microorganisms since the emergence of the single lens microscope in the 17th century. Since then, researchers designed and published many thousands of images to record and share their observations, including hand-drawn diagrams, photomicrographs, and photographs. Images shaped how researchers conceived of microorganisms, their concepts of microorganisms shaped their images, and their images and concepts were shaped by the contexts in which they were working. Over time, the interplay of images and concepts in various research contexts participated in the development of new concepts related to microorganisms, like the “biofilm” concept, or the idea that bacteria exist in nature as complex aggregates attached to surfaces via extracellular polymeric matrices. Many histories of microbiology locate the origin of the biofilm concept in the 1970s, but that date obscures the rich history of research about attached microbial aggregates that occurred throughout the history of microbiology. I discovered how the interplay of images and concepts related to bacteria participated in the development of the biofilm concept by documenting when and why researchers used different visual features to represent changing concepts related to microorganisms. I specifically examined how and why scientists represented evolving concepts related to bacteria during the 17th century (Chapter 1), from the late 17th century to the early 20th century (Chapter 2), and during the first seventy-four years of the 20th century (Chapter 3). I discovered the biofilm concept developed in at least three unique research contexts during the 20th century, and how images reflected and shaped the concept’s development in each case. The narrative and collection of images generated from this work serve as a visual history of the development of scientists’ ideas about the nature of bacteria over 300 years.
ContributorsGuerrero, Anna Clemencia (Author) / Maienschein, Jane (Thesis advisor) / Laubichler, Manfred (Committee member) / Sterner, Beckett (Committee member) / Matlin, Karl (Committee member) / Arizona State University (Publisher)
Created2023
149806-Thumbnail Image.png
Description
The goal of science education in the United States is promoting scientific literacy for all students. The goal necessitates understanding the nature of science-what science is as a body of knowledge, explanatory tool, and human enterprise. The history of science is one of the most long-standing pedagogical methods of getting

The goal of science education in the United States is promoting scientific literacy for all students. The goal necessitates understanding the nature of science-what science is as a body of knowledge, explanatory tool, and human enterprise. The history of science is one of the most long-standing pedagogical methods of getting at the nature of science. But scientific literacy also encompasses education in scientific inquiry, and in the relationships among science, technology, and society (STS), as well as fact and theory-based subject-matter content. Since the beginning of the standards-based reform movement (circa 1983) many attempts have been made to codify the components of scientific literacy. National level voluntary standards have lead to state standards. Under No Child Left Behind, those state standards have become integral parts of the educational system. Standards are political in nature, yet play the role of intended curriculum. I examine one thread of scientific literacy, the history and nature of science, from its beginnings in science education through the political perturbations of the last thirty years. This examination of "the history and nature of science" through the history of standards-based reform sheds light on our changing conception of scientific literacy.
ContributorsLawrence, Cera Ruth (Author) / Maienschein, Jane (Thesis advisor) / Luft, Julie (Committee member) / LePore, Paul (Committee member) / Arizona State University (Publisher)
Created2011
153012-Thumbnail Image.png
Description
Computational tools in the digital humanities often either work on the macro-scale, enabling researchers to analyze huge amounts of data, or on the micro-scale, supporting scholars in the interpretation and analysis of individual documents. The proposed research system that was developed in the context of this dissertation ("Quadriga System") works

Computational tools in the digital humanities often either work on the macro-scale, enabling researchers to analyze huge amounts of data, or on the micro-scale, supporting scholars in the interpretation and analysis of individual documents. The proposed research system that was developed in the context of this dissertation ("Quadriga System") works to bridge these two extremes by offering tools to support close reading and interpretation of texts, while at the same time providing a means for collaboration and data collection that could lead to analyses based on big datasets. In the field of history of science, researchers usually use unstructured data such as texts or images. To computationally analyze such data, it first has to be transformed into a machine-understandable format. The Quadriga System is based on the idea to represent texts as graphs of contextualized triples (or quadruples). Those graphs (or networks) can then be mathematically analyzed and visualized. This dissertation describes two projects that use the Quadriga System for the analysis and exploration of texts and the creation of social networks. Furthermore, a model for digital humanities education is proposed that brings together students from the humanities and computer science in order to develop user-oriented, innovative tools, methods, and infrastructures.
ContributorsDamerow, Julia (Author) / Laubichler, Manfred (Thesis advisor) / Maienschein, Jane (Thesis advisor) / Creath, Richard (Committee member) / Ellison, Karin (Committee member) / Hooper, Wallace (Committee member) / Renn, Jürgen (Committee member) / Arizona State University (Publisher)
Created2014