Matching Items (79)
161243-Thumbnail Image.png
Description
Water is a vital resource, and its protection is a priority world-wide. One widespread threat to water quality is contamination by chlorinated solvents. These dry-cleaning and degreasing agents entered the watershed through spills and improper disposal and now are detected in 4% of U.S. aquifers and 4.5-18% of U.S.

Water is a vital resource, and its protection is a priority world-wide. One widespread threat to water quality is contamination by chlorinated solvents. These dry-cleaning and degreasing agents entered the watershed through spills and improper disposal and now are detected in 4% of U.S. aquifers and 4.5-18% of U.S. drinking water sources. The health effects of these contaminants can be severe, as they are associated with damage to the nervous, liver, kidney, and reproductive systems, developmental issues, and possibly cancer. Chlorinated solvents must be removed or transformed to improve water quality and protect human and environmental health. One remedy, bioaugmentation, the subsurface addition of microbial cultures able to transform contaminants, has been implemented successfully at hundreds of sites since the 1990s. Bioaugmentation uses the bacteria Dehalococcoides to transform chlorinated solvents with hydrogen, H2, as the electron donor. At advection limited sites, bioaugmentation can be combined with electrokinetics (EK-Bio) to enhance transport. However, challenges for successful bioremediation remain. In this work I addressed several knowledge gaps surrounding bioaugmentation and EK-Bio. I measured the H2 consuming capacity of soils, detailed the microbial metabolisms driving this demand, and evaluated how these finding relate to reductive dechlorination. I determined which reactions dominated at a contaminated site with mixed geochemistry treated with EK-Bio and compared it to traditional bioaugmentation. Lastly, I assessed the effect of EK-Bio on the microbial community at a field-scale site. Results showed the H2 consuming capacity of soils was greater than that predicted by initial measurements of inorganic electron acceptors and primarily driven by carbon-based microbial metabolisms. Other work demonstrated that, given the benefits of some carbon-based metabolisms to microbial reductive dechlorination, high levels of H2 consumption in soils are not necessarily indicative of hostile conditions for Dehalococcoides. Bench-scale experiments of EK-Bio under mixed geochemical conditions showed EK-Bio out-performed traditional bioaugmentation by facilitating biotic and abiotic transformations. Finally, results of microbial community analysis at a field-scale implementation of EK-Bio showed that while there were significant changes in alpha and beta diversity, the impact of EK-Bio on native microbial communities was minimal.
ContributorsAltizer, Megan Leigh (Author) / Torres, César I (Thesis advisor) / Krajmalnik-Brown, Rosa (Thesis advisor) / Rittmann, Bruce E (Committee member) / Kavazanjian, Edward (Committee member) / Delgado, Anca G (Committee member) / Arizona State University (Publisher)
Created2020
161213-Thumbnail Image.jpg
Description

Not only is Tyrosine one of the 20 amino acids that make proteins, but its catabolism also has many branches including a pathway that can be found in humans. Any mutations in the enzymes of this pathway can cause many disorders in humans including hereditary tyrosinemia type I. For this

Not only is Tyrosine one of the 20 amino acids that make proteins, but its catabolism also has many branches including a pathway that can be found in humans. Any mutations in the enzymes of this pathway can cause many disorders in humans including hereditary tyrosinemia type I. For this reason, understanding how tyrosine gets degraded in humans can help in developing therapies against disorders of the human tyrosine catabolism pathway. In this work, we explored what type of enzymes do microbes that reside within humans (the human microbiome) have to degrade tyrosine and how we can take advantage of the enzymes of the human microbiome for the betterment of human health and physiology.

ContributorsToy, Amber (Author) / Shah, Dhara (Thesis director) / Shrivastava, Abhishek (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Natural Sciences (Contributor)
Created2021-12
153560-Thumbnail Image.png
Description
Large-scale cultivation of photosynthetic microorganisms for the production of biodiesel and other valuable commodities must be made more efficient. Recycling the water and nutrients acquired from biomass harvesting promotes a more sustainable and economically viable enterprise. This study reports on growing the cyanobacterium Synechocystis sp. PCC 6803 using

Large-scale cultivation of photosynthetic microorganisms for the production of biodiesel and other valuable commodities must be made more efficient. Recycling the water and nutrients acquired from biomass harvesting promotes a more sustainable and economically viable enterprise. This study reports on growing the cyanobacterium Synechocystis sp. PCC 6803 using permeate obtained from concentrating the biomass by cross-flow membrane filtration. I used a kinetic model based on the available light intensity (LI) to predict biomass productivity and evaluate overall performance.

During the initial phase of the study, I integrated a membrane filter with a bench-top photobioreactor (PBR) and created a continuously operating system. Recycling permeate reduced the amount of fresh medium delivered to the PBR by 45%. Biomass production rates as high as 400 mg-DW/L/d (9.2 g-DW/m2/d) were sustained under constant lighting over a 12-day period.

In the next phase, I operated the system as a sequencing batch reactor (SBR), which improved control over nutrient delivery and increased the concentration factor of filtered biomass (from 1.8 to 6.8). I developed unique system parameters to compute the amount of recycled permeate in the reactor and the actual hydraulic retention time during SBR operation. The amount of medium delivered to the system was reduced by up to 80%, and growth rates were consistent at variable amounts of repeatedly recycled permeate. The light-based model accurately predicted growth when biofilm was not present. Coupled with mass ratios for PCC 6803, these predictions facilitated efficient delivery of nitrogen and phosphorus. Daily biomass production rates and specific growth rates equal to 360 mg-DW/L/d (8.3 g/m2/d) and 1.0 d-1, respectively, were consistently achieved at a relatively low incident LI (180 µE/m2/s). Higher productivities (up to 550 mg-DW/L/d) occurred under increased LI (725 µE/m2/s), although the onset of biofilm impeded modeled performance.

Permeate did not cause any gradual growth inhibition. Repeated results showed cultures rapidly entered a stressed state, which was followed by widespread cell lysis. This phenomenon occurred independently of permeate recycling and was not caused by nutrient starvation. It may best be explained by negative allelopathic effects or viral infection as a result of mixed culture conditions.
ContributorsThompson, Matthew (Author) / Rittmann, Bruce E. (Thesis advisor) / Fox, Peter (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2015
Description

Widespread contamination of groundwater by chlorinated ethenes and their biological dechlorination products necessitates the reliable monitoring of liquid matrices; current methods approved by the U.S. Environmental Protection Agency (EPA) require a minimum of 5 mL of sample volume and cannot simultaneously detect all transformative products. This paper reports on the

Widespread contamination of groundwater by chlorinated ethenes and their biological dechlorination products necessitates the reliable monitoring of liquid matrices; current methods approved by the U.S. Environmental Protection Agency (EPA) require a minimum of 5 mL of sample volume and cannot simultaneously detect all transformative products. This paper reports on the simultaneous detection of six chlorinated ethenes and ethene itself, using a liquid sample volume of 1 mL by concentrating the compounds onto an 85-µm carboxen-polydimenthylsiloxane solid-phase microextraction fiber in 5 min and subsequent chromatographic analysis in 9.15 min. Linear increases in signal response were obtained over three orders of magnitude (∼0.05 to ∼50 µM) for simultaneous analysis with coefficient of determination (R2) values of ≥ 0.99. The detection limits of the method (1.3–6 µg/L) were at or below the maximum contaminant levels specified by the EPA. Matrix spike studies with groundwater and mineral medium showed recovery rates between 79–108%. The utility of the method was demonstrated in lab-scale sediment flow-through columns assessing the bioremediation potential of chlorinated ethene-contaminated groundwater. Owing to its low sample volume requirements, good sensitivity and broad target analyte range, the method is suitable for routine compliance monitoring and is particularly attractive for interpreting the bench-scale feasibility studies that are commonly performed during the remedial design stage of groundwater cleanup projects.

ContributorsZiv-El, Michal (Author) / Kalinowski, Tomasz (Author) / Krajmalnik-Brown, Rosa (Author) / Halden, Rolf (Author) / Biodesign Institute (Contributor)
Created2014-02-01
168837-Thumbnail Image.png
Description

Widespread use of halogenated organic compounds for commercial and industrial purposes makes halogenated organic pollutants (HOPs) a global challenge for environmental quality. Current wastewater treatment plants (WWTPs) are successful at reducing chemical oxygen demand (COD), but the removal of HOPs often is poor. Since HOPs are xenobiotics, the biodegradation of

Widespread use of halogenated organic compounds for commercial and industrial purposes makes halogenated organic pollutants (HOPs) a global challenge for environmental quality. Current wastewater treatment plants (WWTPs) are successful at reducing chemical oxygen demand (COD), but the removal of HOPs often is poor. Since HOPs are xenobiotics, the biodegradation of HOPs is usually limited in the WWTPs. The current methods for HOPs treatments (e.g., chemical, photochemical, electrochemical, and biological methods) do have their limitations for practical applications. Therefore, a combination of catalytic and biological treatment methods may overcome the challenges of HOPs removal.This dissertation investigated a novel catalytic and biological synergistic platform to treat HOPs. 4-chlorophenol (4-CP) and halogenated herbicides were used as model pollutants for the HOPs removal tests. The biological part of experiments documented successful co-oxidation of HOPs and analog non-halogenated organic pollutants (OPs) (as the primary substrates) in the continuous operation of O2-based membrane biofilm reactor (O2-MBfR). In the first stage of the synergistic platform, HOPs were reductively dehalogenated to less toxic and more biodegradable OPs during continuous operation of a H2-based membrane catalytic-film reactor (H2-MCfR). The synergistic platform experiments demonstrated that OPs generated in the H2-MCfR were used as the primary substrates to support the co-oxidation of HOPs in the subsequent O2-MBfR. Once at least 90% conversation of HOPs to OPs was achieved in the H2-MCfR, the products (OPs to HOPs mole ratio >9) in the effluent could be completely mineralized through co-oxidation in O2-MBfR. By using H2 gas as the primary substrate, instead adding the analog OP, the synergistic platform greatly reduced chemical costs and carbon-dioxide emissions during HOPs co-oxidation.

ContributorsLuo, Yihao (Author) / Rittmann, Bruce (Thesis advisor) / Krajmalnik-Brown, Rosa (Committee member) / Torres, Cesar (Committee member) / Arizona State University (Publisher)
Created2022
165705-Thumbnail Image.png
Description
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that not only affects communication and behavior with often co-occurring gastrointestinal (GI) issues such as constipation and diarrhea. Recent studies have shown that many GI and behavioral symptoms in individuals with ASD are linked to dysregulated immune systems and altered gut microbiomes

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that not only affects communication and behavior with often co-occurring gastrointestinal (GI) issues such as constipation and diarrhea. Recent studies have shown that many GI and behavioral symptoms in individuals with ASD are linked to dysregulated immune systems and altered gut microbiomes (bacteria and fungi). In fungal microbiota, a common GI commensal and opportunistic pathogen, Candida, has been found in higher abundance in children with ASD. Few studies have investigated total IgA and IgG levels in both blood and feces of ASD individuals with relatively mixed findings, showing either significantly higher or lower IgG and IgA abundance in ASD vs. TD (typically developing) individuals. Mixed results are likely due to a lack of a standardized method of immunoglobulin (Ig) quantification. In this study, we attempt to standardize an enzyme-linked immunoassay (ELISA) procedure to measure total IgA, total IgG, and anti-Candida albicans IgA and IgG levels in fecal samples of adults with ASD. Measuring Ig levels can reflect altered gut microbiota, GI tract, and immune status in ASD and potentially characterize Ig as a biomarker for ASD. Although we were unable to successfully standardize an Ig ELISA quantification method, SDS-PAGE confirmed the presence of IgA in fecal Ig extracts. Based on our ELISA results, we suspect that dilution factors of fecal Ig extracts need to be modified further to detect the IgA within the detection range. The experimental methodology in this study can be used as a reference to develop and improve a full-proof method of quantifying immunoglobulin from ASD fecal samples, which will help to reveal immune status in ASD.
ContributorsMarwah, Mira (Author) / Campos, Nicole (Co-author) / Krajmalnik-Brown, Rosa (Thesis director) / Nirmalkar, Khemlal (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Department of Psychology (Contributor)
Created2022-05
165760-Thumbnail Image.png
Description
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that not only affects communication and behavior with often co-occurring gastrointestinal (GI) issues such as constipation and diarrhea. Recent studies have shown that many GI and behavioral symptoms in individuals with ASD are linked to dysregulated immune systems and altered gut microbiomes

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that not only affects communication and behavior with often co-occurring gastrointestinal (GI) issues such as constipation and diarrhea. Recent studies have shown that many GI and behavioral symptoms in individuals with ASD are linked to dysregulated immune systems and altered gut microbiomes (bacteria and fungi). In fungal microbiota, a common GI commensal and opportunistic pathogen, Candida, has been found in higher abundance in children with ASD. Few studies have investigated total IgA and IgG levels in both blood and feces of ASD individuals with relatively mixed findings, showing either significantly higher or lower IgG and IgA abundance in ASD vs. TD (typically developing) individuals. Mixed results are likely due to a lack of a standardized method of immunoglobulin (Ig) quantification. In this study, we attempt to standardize an enzyme-linked immunoassay (ELISA) procedure to measure total IgA, total IgG, and anti-Candida albicans IgA and IgG levels in fecal samples of adults with ASD. Measuring Ig levels can reflect altered gut microbiota, GI tract, and immune status in ASD and potentially characterize Ig as a biomarker for ASD. Although we were unable to successfully standardize an Ig ELISA quantification method, SDS-PAGE confirmed the presence of IgA in fecal Ig extracts. Based on our ELISA results, we suspect that dilution factors of fecal Ig extracts need to be modified further to detect the IgA within the detection range. The experimental methodology in this study can be used as a reference to develop and improve a full-proof method of quantifying immunoglobulin from ASD fecal samples, which will help to reveal immune status in ASD.
ContributorsCampos, Nicole (Author) / Marwah, Mira (Co-author) / Krajmalnik-Brown, Rosa (Thesis director) / Nirmalkar, Khemlal (Committee member) / Barrett, The Honors College (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / School of Life Sciences (Contributor)
Created2022-05
151393-Thumbnail Image.png
Description
DehaloR^2 is a previously characterized, trichloroethene (TCE)-dechlorinating culture and contains bacteria from the known dechlorinating genus, Dehalococcoides. DehaloR^2 was exposed to three anthropogenic contaminants, Triclocarban (TCC), tris(2-chloroethyl) phosphate (TCEP), and 1,1,1-trichloroethane (TCA) and two biogenic-like halogenated compounds, 2,6-dibromophenol (2,6-DBP) and 2,6-dichlorophenol (2,6-DCP). The effects on TCE dechlorination ability due to

DehaloR^2 is a previously characterized, trichloroethene (TCE)-dechlorinating culture and contains bacteria from the known dechlorinating genus, Dehalococcoides. DehaloR^2 was exposed to three anthropogenic contaminants, Triclocarban (TCC), tris(2-chloroethyl) phosphate (TCEP), and 1,1,1-trichloroethane (TCA) and two biogenic-like halogenated compounds, 2,6-dibromophenol (2,6-DBP) and 2,6-dichlorophenol (2,6-DCP). The effects on TCE dechlorination ability due to 2,6-DBP and 2,6-DCP exposures were also investigated. DehaloR^2 did not dechlorinate TCC or TCEP. After initial exposure to TCA, half of the initial TCA was dechlorinated to 1,1-dichloroethane (DCA), however half of the TCA remained by day 100. Subsequent TCA and TCE re-exposure showed no reductive dechlorination activity for both TCA and TCE by 120 days after the re-exposure. It has been hypothesized that the microbial TCE-dechlorinating ability was developed before TCE became abundant in groundwater. This dechlorinating ability would have existed in the microbial metabolism due to previous exposure to biogenic halogenated compounds. After observing the inability of DehaloR^2 to dechlorinate other anthropogenic compounds, DehaloR^2 was then exposed to two naturally occurring halogenated phenols, 2,6-DBP and 2,6-DCP, in the presence and absence of TCE. DehaloR^2 debrominated 2,6-DBP through the intermediate 2-bromophenol (2-BP) to the end product phenol faster in the presence of TCE. DehaloR^2 dechlorinated 2,6-DCP to 2-CP in the absence of TCE; however, 2,6-DCP dechlorination was incomplete in the presence of TCE. Additionally, when 2,6-DBP was present, complete TCE dechlorination to ethene occurred more quickly than when TCE was present without 2,6-DBP. However, when 2,6-DCP was present, TCE dechlorination to ethene had not completed by day 55. The increased dehalogenation rate of 2,6-DBP and TCE when present together compared to conditions containing only 2,6-DBP or only TCE suggests a possible synergistic relationship between 2,6-DBP and TCE, while the decreased dechlorination rate of 2,6-DCP and TCE when present together compared to conditions containing only 2,6-DCP or only TCE suggests an inhibitory effect.
ContributorsKegerreis, Kylie (Author) / Krajmalnik-Brown, Rosa (Thesis advisor) / Halden, Rolf U. (Committee member) / Torres, César I (Committee member) / Arizona State University (Publisher)
Created2012
172010-Thumbnail Image.png
Description
This dissertation encompasses the interaction of antimicrobial chemicals and emerging contaminants with multi-drug resistant (MDR) bacteria and their implications in engineered systems. The aim is to investigate the effect of combination antimicrobials on MDR bacteria E. coli, evaluate the extent of synergism and antagonism of utilizing two distinct biocidal chemicals,

This dissertation encompasses the interaction of antimicrobial chemicals and emerging contaminants with multi-drug resistant (MDR) bacteria and their implications in engineered systems. The aim is to investigate the effect of combination antimicrobials on MDR bacteria E. coli, evaluate the extent of synergism and antagonism of utilizing two distinct biocidal chemicals, and evaluate the influence of endocrine-disrupting chemicals (EDCs) on protein production in response to stressors. Resistance mechanisms of bacteria such as E. coli include the use of protein systems that efflux excess nutrients or toxic compounds. These efflux proteins activate in response to environmental stressors such as contaminants and antimicrobials to varying degrees and are major contributors to antibiotic resistance in pathogenic bacteria. As is the case with engineered microbial environments, large quantities of emerging contaminants interact with bacteria, influencing antibiotic resistance and attenuation of these chemicals to an unknown degree. Interactions of antimicrobials on MDR bacteria such as E. coli have been extensively studied for pathogens, including synergistic combinations. Despite these studies in this field, a fundamental understanding of how chemicals influence antibiotic resistance in biological processes typical of engineered microbial environments is still ongoing. The impacts of EDCs on antibiotic resistance in E. coli were investigated by the characterization of synergism for antimicrobial therapies and the extrapolation of these metrics to the cycling of EDCs in engineered systems to observe the extent of antibiotic resistance proteins to the EDCs. The impact of this work provides insight into the delicate biochemistry and ongoing resistance phenomena regarding engineered systems.
ContributorsNovoa, Diego Erick (Author) / Conroy-Ben, Otakuye (Thesis advisor) / Abbazadegan, Morteza (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2022
130291-Thumbnail Image.png
Description
pH and fermentable substrates impose selective pressures on gut microbial communities and their metabolisms. We evaluated the relative contributions of pH, alkalinity, and substrate on microbial community structure, metabolism, and functional interactions using triplicate batch cultures started from fecal slurry and incubated with an initial pH of 6.0, 6.5, or

pH and fermentable substrates impose selective pressures on gut microbial communities and their metabolisms. We evaluated the relative contributions of pH, alkalinity, and substrate on microbial community structure, metabolism, and functional interactions using triplicate batch cultures started from fecal slurry and incubated with an initial pH of 6.0, 6.5, or 6.9 and 10 mM glucose, fructose, or cellobiose as the carbon substrate. We analyzed 16S rRNA gene sequences and fermentation products. Microbial diversity was driven by both pH and substrate type. Due to insufficient alkalinity, a drop in pH from 6.0 to ~4.5 clustered pH 6.0 cultures together and distant from pH 6.5 and 6.9 cultures, which experienced only small pH drops. Cellobiose yielded more acidity than alkalinity due to the amount of fermentable carbon, which moved cellobiose pH 6.5 cultures away from other pH 6.5 cultures. The impact of pH on microbial community structure was reflected by fermentative metabolism. Lactate accumulation occurred in pH 6.0 cultures, whereas propionate and acetate accumulations were observed in pH 6.5 and 6.9 cultures and independently from the type of substrate provided. Finally, pH had an impact on the interactions between lactate-producing and -consuming communities. Lactate-producing Streptococcus dominated pH 6.0 cultures, and acetate- and propionate-producing Veillonella, Bacteroides, and Escherichia dominated the cultures started at pH 6.5 and 6.9. Acid inhibition on lactate-consuming species led to lactate accumulation. Our results provide insights into pH-derived changes in fermenting microbiota and metabolisms in the human gut.
Created2017-05-03