Matching Items (79)
130291-Thumbnail Image.png
Description
pH and fermentable substrates impose selective pressures on gut microbial communities and their metabolisms. We evaluated the relative contributions of pH, alkalinity, and substrate on microbial community structure, metabolism, and functional interactions using triplicate batch cultures started from fecal slurry and incubated with an initial pH of 6.0, 6.5, or

pH and fermentable substrates impose selective pressures on gut microbial communities and their metabolisms. We evaluated the relative contributions of pH, alkalinity, and substrate on microbial community structure, metabolism, and functional interactions using triplicate batch cultures started from fecal slurry and incubated with an initial pH of 6.0, 6.5, or 6.9 and 10 mM glucose, fructose, or cellobiose as the carbon substrate. We analyzed 16S rRNA gene sequences and fermentation products. Microbial diversity was driven by both pH and substrate type. Due to insufficient alkalinity, a drop in pH from 6.0 to ~4.5 clustered pH 6.0 cultures together and distant from pH 6.5 and 6.9 cultures, which experienced only small pH drops. Cellobiose yielded more acidity than alkalinity due to the amount of fermentable carbon, which moved cellobiose pH 6.5 cultures away from other pH 6.5 cultures. The impact of pH on microbial community structure was reflected by fermentative metabolism. Lactate accumulation occurred in pH 6.0 cultures, whereas propionate and acetate accumulations were observed in pH 6.5 and 6.9 cultures and independently from the type of substrate provided. Finally, pH had an impact on the interactions between lactate-producing and -consuming communities. Lactate-producing Streptococcus dominated pH 6.0 cultures, and acetate- and propionate-producing Veillonella, Bacteroides, and Escherichia dominated the cultures started at pH 6.5 and 6.9. Acid inhibition on lactate-consuming species led to lactate accumulation. Our results provide insights into pH-derived changes in fermenting microbiota and metabolisms in the human gut.
Created2017-05-03
130259-Thumbnail Image.png
Description
Background
Syngas fermentation, the bioconversion of CO, CO[subscript 2], and H[subscript 2] to biofuels and chemicals, has undergone considerable optimization for industrial applications. Even more, full-scale plants for ethanol production from syngas fermentation by pure cultures are being built worldwide. The composition of syngas depends on the feedstock gasified and the

Background
Syngas fermentation, the bioconversion of CO, CO[subscript 2], and H[subscript 2] to biofuels and chemicals, has undergone considerable optimization for industrial applications. Even more, full-scale plants for ethanol production from syngas fermentation by pure cultures are being built worldwide. The composition of syngas depends on the feedstock gasified and the gasification conditions. However, it remains unclear how different syngas mixtures affect the metabolism of carboxidotrophs, including the ethanol/acetate ratios. In addition, the potential application of mixed cultures in syngas fermentation and their advantages over pure cultures have not been deeply explored. In this work, the effects of CO[subscript 2] and H[subscript 2] on the CO metabolism by pure and mixed cultures were studied and compared. For this, a CO-enriched mixed culture and two isolated carboxidotrophs were grown with different combinations of syngas components (CO, CO:H[subscript 2], CO:CO[subscript 2], or CO:CO[subscript 2]:H[subscript 2]).
Results
The CO metabolism of the mixed culture was somehow affected by the addition of CO[subscript 2] and/or H[subscript 2], but the pure cultures were more sensitive to changes in gas composition than the mixed culture. CO[subscript 2] inhibited CO oxidation by the Pleomorphomonas-like isolate and decreased the ethanol/acetate ratio by the Acetobacterium-like isolate. H[subscript 2] did not inhibit ethanol or H[subscript 2] production by the Acetobacterium and Pleomorphomonas isolates, respectively, but decreased their CO consumption rates. As part of the mixed culture, these isolates, together with other microorganisms, consumed H[subscript 2] and CO[subscript 2] (along with CO) for all conditions tested and at similar CO consumption rates (2.6 ± 0.6 mmol CO L[superscript −1] day[superscript −1]), while maintaining overall function (acetate production). Providing a continuous supply of CO by membrane diffusion caused the mixed culture to switch from acetate to ethanol production, presumably due to the increased supply of electron donor. In parallel with this change in metabolic function, the structure of the microbial community became dominated by Geosporobacter phylotypes, instead of Acetobacterium and Pleomorphomonas phylotypes.
Conclusions
These results provide evidence for the potential of mixed-culture syngas fermentation, since the CO-enriched mixed culture showed high functional redundancy, was resilient to changes in syngas composition, and was capable of producing acetate or ethanol as main products of CO metabolism.
Created2017-09-16
130431-Thumbnail Image.png
Description
We studied the microbial community structure of pilot two-stage membrane biofilm reactors (MBfRs) designed to reduce nitrate (NO[subscript 3]–) and perchlorate (ClO[subscript 4]–) in contaminated groundwater. The groundwater also contained oxygen (O[subscript 2]) and sulfate (SO[2 over 4]–), which became important electron sinks that affected the NO[subscript 3]– and ClO[subscript

We studied the microbial community structure of pilot two-stage membrane biofilm reactors (MBfRs) designed to reduce nitrate (NO[subscript 3]–) and perchlorate (ClO[subscript 4]–) in contaminated groundwater. The groundwater also contained oxygen (O[subscript 2]) and sulfate (SO[2 over 4]–), which became important electron sinks that affected the NO[subscript 3]– and ClO[subscript 4]– removal rates. Using pyrosequencing, we elucidated how important phylotypes of each “primary” microbial group, i.e., denitrifying bacteria (DB), perchlorate-reducing bacteria (PRB), and sulfate-reducing bacteria (SRB), responded to changes in electron-acceptor loading. UniFrac, principal coordinate analysis (PCoA), and diversity analyses documented that the microbial community of biofilms sampled when the MBfRs had a high acceptor loading were phylogenetically distant from and less diverse than the microbial community of biofilm samples with lower acceptor loadings. Diminished acceptor loading led to SO[2 over 4]– reduction in the lag MBfR, which allowed Desulfovibrionales (an SRB) and Thiothrichales (sulfur-oxidizers) to thrive through S cycling. As a result of this cooperative relationship, they competed effectively with DB/PRB phylotypes such as Xanthomonadales and Rhodobacterales. Thus, pyrosequencing illustrated that while DB, PRB, and SRB responded predictably to changes in acceptor loading, a decrease in total acceptor loading led to important shifts within the “primary” groups, the onset of other members (e.g., Thiothrichales), and overall greater diversity.
Created2014-07-01
Description

Widespread contamination of groundwater by chlorinated ethenes and their biological dechlorination products necessitates the reliable monitoring of liquid matrices; current methods approved by the U.S. Environmental Protection Agency (EPA) require a minimum of 5 mL of sample volume and cannot simultaneously detect all transformative products. This paper reports on the

Widespread contamination of groundwater by chlorinated ethenes and their biological dechlorination products necessitates the reliable monitoring of liquid matrices; current methods approved by the U.S. Environmental Protection Agency (EPA) require a minimum of 5 mL of sample volume and cannot simultaneously detect all transformative products. This paper reports on the simultaneous detection of six chlorinated ethenes and ethene itself, using a liquid sample volume of 1 mL by concentrating the compounds onto an 85-µm carboxen-polydimenthylsiloxane solid-phase microextraction fiber in 5 min and subsequent chromatographic analysis in 9.15 min. Linear increases in signal response were obtained over three orders of magnitude (∼0.05 to ∼50 µM) for simultaneous analysis with coefficient of determination (R2) values of ≥ 0.99. The detection limits of the method (1.3–6 µg/L) were at or below the maximum contaminant levels specified by the EPA. Matrix spike studies with groundwater and mineral medium showed recovery rates between 79–108%. The utility of the method was demonstrated in lab-scale sediment flow-through columns assessing the bioremediation potential of chlorinated ethene-contaminated groundwater. Owing to its low sample volume requirements, good sensitivity and broad target analyte range, the method is suitable for routine compliance monitoring and is particularly attractive for interpreting the bench-scale feasibility studies that are commonly performed during the remedial design stage of groundwater cleanup projects.

ContributorsZiv-El, Michal (Author) / Kalinowski, Tomasz (Author) / Krajmalnik-Brown, Rosa (Author) / Halden, Rolf (Author) / Biodesign Institute (Contributor)
Created2014-02-01
168837-Thumbnail Image.png
Description

Widespread use of halogenated organic compounds for commercial and industrial purposes makes halogenated organic pollutants (HOPs) a global challenge for environmental quality. Current wastewater treatment plants (WWTPs) are successful at reducing chemical oxygen demand (COD), but the removal of HOPs often is poor. Since HOPs are xenobiotics, the biodegradation of

Widespread use of halogenated organic compounds for commercial and industrial purposes makes halogenated organic pollutants (HOPs) a global challenge for environmental quality. Current wastewater treatment plants (WWTPs) are successful at reducing chemical oxygen demand (COD), but the removal of HOPs often is poor. Since HOPs are xenobiotics, the biodegradation of HOPs is usually limited in the WWTPs. The current methods for HOPs treatments (e.g., chemical, photochemical, electrochemical, and biological methods) do have their limitations for practical applications. Therefore, a combination of catalytic and biological treatment methods may overcome the challenges of HOPs removal.This dissertation investigated a novel catalytic and biological synergistic platform to treat HOPs. 4-chlorophenol (4-CP) and halogenated herbicides were used as model pollutants for the HOPs removal tests. The biological part of experiments documented successful co-oxidation of HOPs and analog non-halogenated organic pollutants (OPs) (as the primary substrates) in the continuous operation of O2-based membrane biofilm reactor (O2-MBfR). In the first stage of the synergistic platform, HOPs were reductively dehalogenated to less toxic and more biodegradable OPs during continuous operation of a H2-based membrane catalytic-film reactor (H2-MCfR). The synergistic platform experiments demonstrated that OPs generated in the H2-MCfR were used as the primary substrates to support the co-oxidation of HOPs in the subsequent O2-MBfR. Once at least 90% conversation of HOPs to OPs was achieved in the H2-MCfR, the products (OPs to HOPs mole ratio >9) in the effluent could be completely mineralized through co-oxidation in O2-MBfR. By using H2 gas as the primary substrate, instead adding the analog OP, the synergistic platform greatly reduced chemical costs and carbon-dioxide emissions during HOPs co-oxidation.

ContributorsLuo, Yihao (Author) / Rittmann, Bruce (Thesis advisor) / Krajmalnik-Brown, Rosa (Committee member) / Torres, Cesar (Committee member) / Arizona State University (Publisher)
Created2022
165705-Thumbnail Image.png
Description
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that not only affects communication and behavior with often co-occurring gastrointestinal (GI) issues such as constipation and diarrhea. Recent studies have shown that many GI and behavioral symptoms in individuals with ASD are linked to dysregulated immune systems and altered gut microbiomes

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that not only affects communication and behavior with often co-occurring gastrointestinal (GI) issues such as constipation and diarrhea. Recent studies have shown that many GI and behavioral symptoms in individuals with ASD are linked to dysregulated immune systems and altered gut microbiomes (bacteria and fungi). In fungal microbiota, a common GI commensal and opportunistic pathogen, Candida, has been found in higher abundance in children with ASD. Few studies have investigated total IgA and IgG levels in both blood and feces of ASD individuals with relatively mixed findings, showing either significantly higher or lower IgG and IgA abundance in ASD vs. TD (typically developing) individuals. Mixed results are likely due to a lack of a standardized method of immunoglobulin (Ig) quantification. In this study, we attempt to standardize an enzyme-linked immunoassay (ELISA) procedure to measure total IgA, total IgG, and anti-Candida albicans IgA and IgG levels in fecal samples of adults with ASD. Measuring Ig levels can reflect altered gut microbiota, GI tract, and immune status in ASD and potentially characterize Ig as a biomarker for ASD. Although we were unable to successfully standardize an Ig ELISA quantification method, SDS-PAGE confirmed the presence of IgA in fecal Ig extracts. Based on our ELISA results, we suspect that dilution factors of fecal Ig extracts need to be modified further to detect the IgA within the detection range. The experimental methodology in this study can be used as a reference to develop and improve a full-proof method of quantifying immunoglobulin from ASD fecal samples, which will help to reveal immune status in ASD.
ContributorsMarwah, Mira (Author) / Campos, Nicole (Co-author) / Krajmalnik-Brown, Rosa (Thesis director) / Nirmalkar, Khemlal (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Department of Psychology (Contributor)
Created2022-05
165760-Thumbnail Image.png
Description
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that not only affects communication and behavior with often co-occurring gastrointestinal (GI) issues such as constipation and diarrhea. Recent studies have shown that many GI and behavioral symptoms in individuals with ASD are linked to dysregulated immune systems and altered gut microbiomes

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that not only affects communication and behavior with often co-occurring gastrointestinal (GI) issues such as constipation and diarrhea. Recent studies have shown that many GI and behavioral symptoms in individuals with ASD are linked to dysregulated immune systems and altered gut microbiomes (bacteria and fungi). In fungal microbiota, a common GI commensal and opportunistic pathogen, Candida, has been found in higher abundance in children with ASD. Few studies have investigated total IgA and IgG levels in both blood and feces of ASD individuals with relatively mixed findings, showing either significantly higher or lower IgG and IgA abundance in ASD vs. TD (typically developing) individuals. Mixed results are likely due to a lack of a standardized method of immunoglobulin (Ig) quantification. In this study, we attempt to standardize an enzyme-linked immunoassay (ELISA) procedure to measure total IgA, total IgG, and anti-Candida albicans IgA and IgG levels in fecal samples of adults with ASD. Measuring Ig levels can reflect altered gut microbiota, GI tract, and immune status in ASD and potentially characterize Ig as a biomarker for ASD. Although we were unable to successfully standardize an Ig ELISA quantification method, SDS-PAGE confirmed the presence of IgA in fecal Ig extracts. Based on our ELISA results, we suspect that dilution factors of fecal Ig extracts need to be modified further to detect the IgA within the detection range. The experimental methodology in this study can be used as a reference to develop and improve a full-proof method of quantifying immunoglobulin from ASD fecal samples, which will help to reveal immune status in ASD.
ContributorsCampos, Nicole (Author) / Marwah, Mira (Co-author) / Krajmalnik-Brown, Rosa (Thesis director) / Nirmalkar, Khemlal (Committee member) / Barrett, The Honors College (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / School of Life Sciences (Contributor)
Created2022-05
151393-Thumbnail Image.png
Description
DehaloR^2 is a previously characterized, trichloroethene (TCE)-dechlorinating culture and contains bacteria from the known dechlorinating genus, Dehalococcoides. DehaloR^2 was exposed to three anthropogenic contaminants, Triclocarban (TCC), tris(2-chloroethyl) phosphate (TCEP), and 1,1,1-trichloroethane (TCA) and two biogenic-like halogenated compounds, 2,6-dibromophenol (2,6-DBP) and 2,6-dichlorophenol (2,6-DCP). The effects on TCE dechlorination ability due to

DehaloR^2 is a previously characterized, trichloroethene (TCE)-dechlorinating culture and contains bacteria from the known dechlorinating genus, Dehalococcoides. DehaloR^2 was exposed to three anthropogenic contaminants, Triclocarban (TCC), tris(2-chloroethyl) phosphate (TCEP), and 1,1,1-trichloroethane (TCA) and two biogenic-like halogenated compounds, 2,6-dibromophenol (2,6-DBP) and 2,6-dichlorophenol (2,6-DCP). The effects on TCE dechlorination ability due to 2,6-DBP and 2,6-DCP exposures were also investigated. DehaloR^2 did not dechlorinate TCC or TCEP. After initial exposure to TCA, half of the initial TCA was dechlorinated to 1,1-dichloroethane (DCA), however half of the TCA remained by day 100. Subsequent TCA and TCE re-exposure showed no reductive dechlorination activity for both TCA and TCE by 120 days after the re-exposure. It has been hypothesized that the microbial TCE-dechlorinating ability was developed before TCE became abundant in groundwater. This dechlorinating ability would have existed in the microbial metabolism due to previous exposure to biogenic halogenated compounds. After observing the inability of DehaloR^2 to dechlorinate other anthropogenic compounds, DehaloR^2 was then exposed to two naturally occurring halogenated phenols, 2,6-DBP and 2,6-DCP, in the presence and absence of TCE. DehaloR^2 debrominated 2,6-DBP through the intermediate 2-bromophenol (2-BP) to the end product phenol faster in the presence of TCE. DehaloR^2 dechlorinated 2,6-DCP to 2-CP in the absence of TCE; however, 2,6-DCP dechlorination was incomplete in the presence of TCE. Additionally, when 2,6-DBP was present, complete TCE dechlorination to ethene occurred more quickly than when TCE was present without 2,6-DBP. However, when 2,6-DCP was present, TCE dechlorination to ethene had not completed by day 55. The increased dehalogenation rate of 2,6-DBP and TCE when present together compared to conditions containing only 2,6-DBP or only TCE suggests a possible synergistic relationship between 2,6-DBP and TCE, while the decreased dechlorination rate of 2,6-DCP and TCE when present together compared to conditions containing only 2,6-DCP or only TCE suggests an inhibitory effect.
ContributorsKegerreis, Kylie (Author) / Krajmalnik-Brown, Rosa (Thesis advisor) / Halden, Rolf U. (Committee member) / Torres, César I (Committee member) / Arizona State University (Publisher)
Created2012
153982-Thumbnail Image.png
Description
Bioremediation of trichloroethene (TCE) using Dehalococcoides mccartyi-containing microbial cultures is a recognized and successful remediation technology. Our work with an upflow anaerobic sludge blanket (UASB) reactor has shown that high-performance, fast-rate dechlorination of TCE can be achieved by promoting bioflocculation of Dehalococcoides mccartyi-containing cultures. The bioreactor achieved high maximum conversion

Bioremediation of trichloroethene (TCE) using Dehalococcoides mccartyi-containing microbial cultures is a recognized and successful remediation technology. Our work with an upflow anaerobic sludge blanket (UASB) reactor has shown that high-performance, fast-rate dechlorination of TCE can be achieved by promoting bioflocculation of Dehalococcoides mccartyi-containing cultures. The bioreactor achieved high maximum conversion rates of 1.63 ± 0.012 mmol Cl- Lculture-1 h-1 at an HRT of 3.6 hours and >97% dechlorination of TCE to ethene while continuously fed 2 mM TCE. The UASB generated bioflocs from a microbially heterogeneous dechlorinating culture and produced Dehalococcoides mccartyi densities of 1.73x10-13 cells Lculture-1 indicating that bioflocculation of Dehalococcoides mccartyi-containing cultures can lead to high density inocula and high-performance, fast-rate bioaugmentation culture for in situ treatment. The successful operation of our pilot scale bioreactor led to the assessment of the technology as an onsite ex-situ treatment system. The bioreactor was then fed TCE-contaminated groundwater from the Motorola Inc. 52nd Street Plant Superfund site in Phoenix, AZ augmented with the lactate and methanol. The bioreactor maintained >99% dechlorination of TCE to ethene during continuous operation at an HRT of 3.2 hours. Microbial community analysis under both experimental conditions reveals shifts in the community structure although maintaining high rate dechlorination. High density dechlorinating cultures containing bioflocs can provide new ways to 1) produce dense bioaugmentation cultures, 2) perform ex-situ bioremediation of TCE, and 3) increase our understanding of Dehalococcoides mccartyi critical microbial interactions that can be exploited at contaminated sites in order to improve long-term bioremediation schemes.
ContributorsFajardo-Williams, Devyn (Author) / Krajmalnik-Brown, Rosa (Thesis advisor) / Torres, César I (Committee member) / Popat, Sudeep C (Committee member) / Arizona State University (Publisher)
Created2015
154205-Thumbnail Image.png
Description
Microbial Electrochemical Cell (MXC) technology harnesses the power stored in wastewater by using anode respiring bacteria (ARB) as a biofilm catalyst to convert the energy stored in waste into hydrogen or electricity. ARB, or exoelectrogens, are able to convert the chemical energy stored in wastes into electrical energy by transporting

Microbial Electrochemical Cell (MXC) technology harnesses the power stored in wastewater by using anode respiring bacteria (ARB) as a biofilm catalyst to convert the energy stored in waste into hydrogen or electricity. ARB, or exoelectrogens, are able to convert the chemical energy stored in wastes into electrical energy by transporting electrons extracellularly and then transferring them to an electrode. If MXC technology is to be feasible for ‘real world’ applications, it is essential that diverse ARB are discovered and their unique physiologies elucidated- ones which are capable of consuming a broad spectrum of wastes from different contaminated water sources.

This dissertation examines the use of Gram-positive thermophilic (60 ◦C) ARB in MXCs since very little is known regarding the behavior of these microorganisms in this setting. Here, we begin with the draft sequence of the Thermincola ferriacetica genome and reveal the presence of 35 multiheme c-type cytochromes. In addition, we employ electrochemical techniques including cyclic voltammetry (CV) and chronoamperometry (CA) to gain insight into the presence of multiple pathways for extracellular electron transport (EET) and current production (j) limitations in T. ferriacetica biofilms.

Next, Thermoanaerobacter pseudethanolicus, a fermentative ARB, is investigated for its ability to ferment pentose and hexose sugars prior to using its fermentation products, including acetate and lactate, for current production in an MXC. Using CA, current production is tracked over time with the generation and consumption of fermentation products. Using CV, the midpoint potential (EKA) of the T. pseudethanolicus EET pathway is revealed.



Lastly, a cellulolytic microbial consortium was employed for the purpose ofassessing the feasibility of using thermophilic MXCs for the conversion of solid waste into current production. Here, a highly enriched consortium of bacteria, predominately from the Firmicutes phylum, is capable of generating current from solid cellulosic materials.
ContributorsLusk, Bradley (Author) / Torres, César I (Thesis advisor) / Rittmann, Bruce E. (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2015