Matching Items (41)

137359-Thumbnail Image.png

Microglia Motility in the Context of a PDGF Induced Glioblastoma

Description

Tumor associated microglia-and-macrophages (TAMS) may constitute up to 30% of the composition of glioblastoma. Through mechanisms not well understood, TAMS are thought to aid the progression and invasiveness of glioblastoma.

Tumor associated microglia-and-macrophages (TAMS) may constitute up to 30% of the composition of glioblastoma. Through mechanisms not well understood, TAMS are thought to aid the progression and invasiveness of glioblastoma. In an effort to investigate properties of TAMS in the context of glioblastoma, I utilized data from a PDGF-driven rat model of glioma that highly resembles human glioblastoma. Data was collected from time-lapse microscopy of slice cultures that differentially labels glioma cells and also microglia cells within and outside the tumor microenvironment. Here I show that microglia localize in the tumor and move with greater speed and migration than microglia outside the tumor environment. Following previous studies that show microglia can be characterized by certain movement distributions based on environmental influences, in this study, the majority of microglia movement was characterized by a power law distribution with a characteristic power law exponent lower than outside the tumor region. This indicates that microglia travel at greater distances within the tumor region than outside of it.

Contributors

Agent

Created

Date Created
  • 2013-12

136857-Thumbnail Image.png

Estimating GL-261 cell growth: A murine model for Glioblastoma Multiforme

Description

Glioblastoma Multiforme (GBM) is an aggressive and deadly form of brain cancer with a median survival time of about a year with treatment. Due to the aggressive nature of these

Glioblastoma Multiforme (GBM) is an aggressive and deadly form of brain cancer with a median survival time of about a year with treatment. Due to the aggressive nature of these tumors and the tendency of gliomas to follow white matter tracks in the brain, each tumor mass has a unique growth pattern. Consequently it is difficult for neurosurgeons to anticipate where the tumor will spread in the brain, making treatment planning difficult. Archival patient data including MRI scans depicting the progress of tumors have been helpful in developing a model to predict Glioblastoma proliferation, but limited scans per patient make the tumor growth rate difficult to determine. Furthermore, patient treatment between scan points can significantly compound the challenge of accurately predicting the tumor growth. A partnership with Barrow Neurological Institute has allowed murine studies to be conducted in order to closely observe tumor growth and potentially improve the current model to more closely resemble intermittent stages of GBM growth without treatment effects.

Contributors

Created

Date Created
  • 2014-05

137666-Thumbnail Image.png

Wada basins of attraction in diffeomorphic maps

Description

Dividing the plane in half leaves every border point of one region a border point of both regions. Can we divide up the plane into three or more regions such

Dividing the plane in half leaves every border point of one region a border point of both regions. Can we divide up the plane into three or more regions such that any point on the boundary of at least one region is on the border of all the regions? In fact, it is possible to design a dynamical system for which the basins of attractions have this Wada property. In certain circumstances, both the Hénon map, a simple system, and the forced damped pendulum, a physical model, produce Wada basins.

Contributors

Created

Date Created
  • 2013-05

137818-Thumbnail Image.png

Lagrangian Skeletons in Hurricane Katrina

Description

This thesis shows analyses of mixing and transport patterns associated with Hurricane Katrina as it hit the United States in August of 2005. Specifically, by applying atmospheric velocity information from

This thesis shows analyses of mixing and transport patterns associated with Hurricane Katrina as it hit the United States in August of 2005. Specifically, by applying atmospheric velocity information from the Weather Research and Forecasting System, finite-time Lyapunov exponents have been computed and the Lagrangian Coherent Structures have been identified. The chaotic dynamics of material transport induced by the hurricane are results from these structures within the flow. Boundaries of the coherent structures are highlighted by the FTLE field. Individual particle transport within the hurricane is affected by the location of these boundaries. In addition to idealized fluid particles, we also studied inertial particles which have finite size and inertia. Basing on established Maxey-Riley equations of the dynamics of particles of finite size, we obtain a reduced equation governing the position process. Using methods derived from computer graphics, we identify maximizers of the FTLE field. Following and applying these ideas, we analyze the dynamics of inertial particle transport within Hurricane Katrina, through comparison of trajectories of dierent sized particles and by pinpointing the location of the Lagrangian Coherent Structures.

Contributors

Agent

Created

Date Created
  • 2012-12

137847-Thumbnail Image.png

Modeling Brain Tumors: Simulating individual Patient Cases of Glioblastoma Multiforme

Description

Glioblastoma multiforme (GBMs) is the most prevalent brain tumor type and causes approximately 40% of all non-metastic primary tumors in adult patients [1]. GBMs are malignant, grade-4 brain tumors, the

Glioblastoma multiforme (GBMs) is the most prevalent brain tumor type and causes approximately 40% of all non-metastic primary tumors in adult patients [1]. GBMs are malignant, grade-4 brain tumors, the most aggressive classication as established by the World Health Organization and are marked by their low survival rate; the median survival time is only twelve months from initial diagnosis: Patients who live more than three years are considered long-term survivors [2]. GBMs are highly invasive and their diffusive growth pattern makes it impossible to remove the tumors by surgery alone [3]. The purpose of this paper is to use individual patient data to parameterize a model of GBMs that allows for data on tumor growth and development to be captured on a clinically relevant time scale. Such an endeavor is the rst step to a clinically applicable predictions of GBMs. Previous research has yielded models that adequately represent the development of GBMs, but they have not attempted to follow specic patient cases through the entire tumor process. Using the model utilized by Kostelich et al. [4], I will attempt to redress this deciency. In doing so, I will improve upon a family of models that can be used to approximate the time of development and/or structure evolution in GBMs. The eventual goal is to incorporate Magnetic Resonance Imaging (MRI) data into a parameterized model of GBMs in such a way that it can be used clinically to predict tumor growth and behavior. Furthermore, I hope to come to a denitive conclusion as to the accuracy of the Koteslich et al. model throughout the development of GBMs tumors.

Contributors

Agent

Created

Date Created
  • 2012-12

137413-Thumbnail Image.png

Predicting Glioblastoma Growth Using a Poisson Process

Description

In this research we consider stochastic models of Glioblastoma Multiforme brain tumors. We first look at a model by K. Swanson et al., which describes the dynamics as random diffusion

In this research we consider stochastic models of Glioblastoma Multiforme brain tumors. We first look at a model by K. Swanson et al., which describes the dynamics as random diffusion plus deterministic logistic growth. We introduce a stochastic component in the logistic growth in the form of a random growth rate defined by a Poisson process. We show that this stochastic logistic growth model leads to a more accurate evaluation of the tumor growth compared its deterministic counterpart. We also discuss future plans to incorporate individual patient geometry, extend the model to three dimensions and to incorporate effects of different treatments into our model, in collaboration with a local hospital.

Contributors

Created

Date Created
  • 2013-12

137507-Thumbnail Image.png

Lagrangian Transport of Inertial Particles in Hurricane Katrina

Description

Using weather data from the Weather Research and Forecasting model (WRF), we analyze the transport of inertial particles in Hurricane Katrina in order to identify coherent patterns of motion. For

Using weather data from the Weather Research and Forecasting model (WRF), we analyze the transport of inertial particles in Hurricane Katrina in order to identify coherent patterns of motion. For our analysis, we choose a Lagrangian approach instead of an Eulerian approach because the Lagrangian approach is objective and frame-independent, and gives results which are better defined. In particular, we locate Lagrangian Coherent Structures (LCS), which are smooth sets of fluid particles which are locally most hyperbolic (either attracting or repelling). We implement a variational method for locating LCS and compare the results to previous computation of LCS using Finite-Time Lyapunov Exponents (FTLE) to identify regions of high stretching in the fluid flow.

Contributors

Agent

Created

Date Created
  • 2013-05

134565-Thumbnail Image.png

A Numerical and Analytical Study of Wave Reflection and Transmission across the Tropopause

Description

A numerical study of wave-induced momentum transport across the tropopause in the presence of a stably stratified thin inversion layer is presented and discussed. This layer consists of a shar

A numerical study of wave-induced momentum transport across the tropopause in the presence of a stably stratified thin inversion layer is presented and discussed. This layer consists of a sharp increase in static stability within the tropopause. The wave propagation is modeled by numerically solving the Taylor-Goldstein equation, which governs the dynamics of internal waves in stably stratified shear flows. The waves are forced by a flow over a bell shaped mountain placed at the lower boundary of the domain. A perfectly radiating condition based on the group velocity of mountain waves is imposed at the top to avoid artificial wave reflection. A validation for the numerical method through comparisons with the corresponding analytical solutions will be provided. Then, the method is applied to more realistic profiles of the stability to study the impact of these profiles on wave propagation through the tropopause.

Contributors

Created

Date Created
  • 2017-05

135355-Thumbnail Image.png

Stochastic parameterization of the proliferation-diffusion model of brain cancer in a Murine model

Description

Glioblastoma multiforme (GBM) is a malignant, aggressive and infiltrative cancer of the central nervous system with a median survival of 14.6 months with standard care. Diagnosis of GBM is made

Glioblastoma multiforme (GBM) is a malignant, aggressive and infiltrative cancer of the central nervous system with a median survival of 14.6 months with standard care. Diagnosis of GBM is made using medical imaging such as magnetic resonance imaging (MRI) or computed tomography (CT). Treatment is informed by medical images and includes chemotherapy, radiation therapy, and surgical removal if the tumor is surgically accessible. Treatment seldom results in a significant increase in longevity, partly due to the lack of precise information regarding tumor size and location. This lack of information arises from the physical limitations of MR and CT imaging coupled with the diffusive nature of glioblastoma tumors. GBM tumor cells can migrate far beyond the visible boundaries of the tumor and will result in a recurring tumor if not killed or removed. Since medical images are the only readily available information about the tumor, we aim to improve mathematical models of tumor growth to better estimate the missing information. Particularly, we investigate the effect of random variation in tumor cell behavior (anisotropy) using stochastic parameterizations of an established proliferation-diffusion model of tumor growth. To evaluate the performance of our mathematical model, we use MR images from an animal model consisting of Murine GL261 tumors implanted in immunocompetent mice, which provides consistency in tumor initiation and location, immune response, genetic variation, and treatment. Compared to non-stochastic simulations, stochastic simulations showed improved volume accuracy when proliferation variability was high, but diffusion variability was found to only marginally affect tumor volume estimates. Neither proliferation nor diffusion variability significantly affected the spatial distribution accuracy of the simulations. While certain cases of stochastic parameterizations improved volume accuracy, they failed to significantly improve simulation accuracy overall. Both the non-stochastic and stochastic simulations failed to achieve over 75% spatial distribution accuracy, suggesting that the underlying structure of the model fails to capture one or more biological processes that affect tumor growth. Two biological features that are candidates for further investigation are angiogenesis and anisotropy resulting from differences between white and gray matter. Time-dependent proliferation and diffusion terms could be introduced to model angiogenesis, and diffusion weighed imaging (DTI) could be used to differentiate between white and gray matter, which might allow for improved estimates brain anisotropy.

Contributors

Agent

Created

Date Created
  • 2016-05

135377-Thumbnail Image.png

Practicality of the Convolutional Solution Method of the Polarization Estimation Inverse Problem for Solid Oxide Fuel Cells

Description

A specific species of the genus Geobacter exhibits useful electrical properties when processing a molecule often found in waste water. A team at ASU including Dr Cèsar Torres and Dr

A specific species of the genus Geobacter exhibits useful electrical properties when processing a molecule often found in waste water. A team at ASU including Dr Cèsar Torres and Dr Sudeep Popat used that species to create a special type of solid oxide fuel cell we refer to as a microbial fuel cell. Identification of possible chemical processes and properties of the reactions used by the Geobacter are investigated indirectly by taking measurements using Electrochemical Impedance Spectroscopy of the electrode-electrolyte interface of the microbial fuel cell to obtain the value of the fuel cell's complex impedance at specific frequencies. Investigation of the multiple polarization processes which give rise to measured impedance values is difficult to do directly and so examination of the distribution function of relaxation times (DRT) is considered instead. The DRT is related to the measured complex impedance values using a general, non-physical equivalent circuit model. That model is originally given in terms of a Fredholm integral equation with a non-square integrable kernel which makes the inverse problem of determining the DRT given the impedance measurements an ill-posed problem. The original integral equation is rewritten in terms of new variables into an equation relating the complex impedance to the convolution of a function based upon the original integral kernel and a related but separate distribution function which we call the convolutional distribution function. This new convolutional equation is solved by reducing the convolution to a pointwise product using the Fourier transform and then solving the inverse problem by pointwise division and application of a filter function (equivalent to regularization). The inverse Fourier transform is then taken to get the convolutional distribution function. In the literature the convolutional distribution function is then examined and certain values of a specific, less general equivalent circuit model are calculated from which aspects of the original chemical processes are derived. We attempted to instead directly determine the original DRT from the calculated convolutional distribution function. This method proved to be practically less useful due to certain values determined at the time of experiment which meant the original DRT could only be recovered in a window which would not normally contain the desired information for the original DRT. This limits any attempt to extend the solution for the convolutional distribution function to the original DRT. Further research may determine a method for interpreting the convolutional distribution function without an equivalent circuit model as is done with the regularization method used to solve directly for the original DRT.

Contributors

Agent

Created

Date Created
  • 2016-05