Matching Items (15)
Filtering by

Clear all filters

133920-Thumbnail Image.png
Description
The combination of immunohistochemical (IHC) stainings and optical microscopy has allowed for the visualization of specific microscopic structures within tissue; however, limitations in light and antibody penetration mitigate the scale on which these images can be taken (Alshammari et al, 2016; Marx, 2014). Tissue clearing, specifically the removal of lipids

The combination of immunohistochemical (IHC) stainings and optical microscopy has allowed for the visualization of specific microscopic structures within tissue; however, limitations in light and antibody penetration mitigate the scale on which these images can be taken (Alshammari et al, 2016; Marx, 2014). Tissue clearing, specifically the removal of lipids to improve sample transparency, solves the former weakness well, but does not improve antibody penetration significantly (Chung et al, 2013; Treweek et al, 2015). Therefore, there is a need to equalize the maximum depth that light can pass through a section with the depth at which there is recognizable fluorescence. This is particularly important when staining blood vessels as traditional size limitations exclusively allows for cross sectional visualization. Passive CLARITY Technique (PACT) has been at the forefront of tissue clearing protocols, utilizing an acrylamide hydrogel solution to maintain structure and sodium dodecyl sulfate to wash out lipids (Tomer et al, 2014). PACT is limited in its ability to clear larger sections and is not conducive to IHC antibody diffusion (Treweek et al, 2015). In order to circumvent these drawbacks, CUBIC was developed as an alternative passive protocol, aimed at being scalable to any tissue size (Richardson, 2015; Susaki et al, 2015). This study compared the effectiveness of both protocols in high and low lipid tissues in the context of blood vessel staining efficacy. Upon initial comparison, it became apparent that there was a statistically significant difference in mean DAPI intensity at all depths, up to 200 micrometers, between CUBIC and PACT \u2014 the former showcasing brighter stainings. Moreover, it was found that PACT does not remove erythrocytes from the tissue meaning that their auto-fluorescence is seen during imaging. Therefore, for blood vessel stainings, only CUBIC was optimized and quantitatively analyzed. In both tissue conditions as well as for two stainings, DAPI and fibronectin (FNCT), optimized CUBIC demonstrated a statistically significant difference from standard CUBIC with regards to mean fluorescent intensity.
ContributorsSidhu, Gurpaul Singh (Author) / VanAuker, Michael (Thesis director) / Kodibagkar, Vikram (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137354-Thumbnail Image.png
Description
The objective of the research presented here was to validate the use of kinetic models for the analysis of the dynamic behavior of a contrast agent in tumor tissue and evaluate the utility of such models in determining kinetic properties - in particular perfusion and molecular binding uptake associated with

The objective of the research presented here was to validate the use of kinetic models for the analysis of the dynamic behavior of a contrast agent in tumor tissue and evaluate the utility of such models in determining kinetic properties - in particular perfusion and molecular binding uptake associated with tissue hypoxia - of the imaged tissue, from concentration data acquired with dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) procedure. Data from two separate DCE-MRI experiments, performed in the past, using a standard contrast agent and a hypoxia-binding agent respectively, were analyzed. The results of the analysis demonstrated that the models used may provide novel characterization of the tumor tissue properties. Future research will work to further characterize the physical significance of the estimated parameters, particularly to provide quantitative oxygenation data for the imaged tissue.
ContributorsMartin, Jonathan Michael (Author) / Kodibagkar, Vikram (Thesis director) / Rege, Kaushal (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2013-12
137469-Thumbnail Image.png
Description
Oxygen delivery is crucial for the development of healthy, functional tissue. Low tissue oxygenation, or hypoxia, is a characteristic that is common in many tumors. Hypoxia contributes to tumor malignancy and can reduce the success of chemotherapy and radiation treatment. There is a current need to noninvasively measure tumor oxygenation

Oxygen delivery is crucial for the development of healthy, functional tissue. Low tissue oxygenation, or hypoxia, is a characteristic that is common in many tumors. Hypoxia contributes to tumor malignancy and can reduce the success of chemotherapy and radiation treatment. There is a current need to noninvasively measure tumor oxygenation or pO2 in patients to determine a personalized treatment method. This project focuses on creating and characterizing nanoemulsions using a pO2 reporter molecule hexamethyldisiloxane (HMDSO) and its longer chain variants as well as assessing their cytotoxicity. We also explored creating multi-modal (MRI/Fluorescence) nanoemulsions.
ContributorsGrucky, Marian Louise (Author) / Kodibagkar, Vikram (Thesis director) / Rege, Kaushal (Committee member) / Stabenfeldt, Sarah (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
137180-Thumbnail Image.png
Description
The main objective of this research is to develop and characterize a targeted contrast agent that will recognize acute neural injury pathology (i.e. fibrin) after traumatic brain injury (TBI). Single chain fragment variable antibodies (scFv) that bind specifically to fibrin have been produced and purified. DSPE-PEG micelles have been produced

The main objective of this research is to develop and characterize a targeted contrast agent that will recognize acute neural injury pathology (i.e. fibrin) after traumatic brain injury (TBI). Single chain fragment variable antibodies (scFv) that bind specifically to fibrin have been produced and purified. DSPE-PEG micelles have been produced and the scFv has been conjugated to the surface of the micelles; this nanoparticle system will be used to overcome limitations in diagnosing TBI. The binding and imaging properties will be analyzed in the future to determine functionality of the nanoparticle system in vivo.
ContributorsRumbo, Kailey Michelle (Author) / Stabenfeldt, Sarah (Thesis director) / Kodibagkar, Vikram (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
137147-Thumbnail Image.png
Description
Smart contrast agents allow for noninvasive study of specific events or tissue conditions inside of a patient's body using Magnetic Resonance Imaging (MRI). This research aims to develop and characterize novel smart contrast agents for MRI that respond to temperature changes in tissue microenvironments. Transmission Electron Microscopy, Nuclear Magnetic Resonance,

Smart contrast agents allow for noninvasive study of specific events or tissue conditions inside of a patient's body using Magnetic Resonance Imaging (MRI). This research aims to develop and characterize novel smart contrast agents for MRI that respond to temperature changes in tissue microenvironments. Transmission Electron Microscopy, Nuclear Magnetic Resonance, and cell culture growth assays were used to characterize the physical, magnetic, and cytotoxic properties of candidate nanoprobes. The nanoprobes displayed thermosensitve MR properties with decreasing relaxivity with temperature. Future work will be focused on generating and characterizing photo-active analogues of the nanoprobes that could be used for both treatment of tissues and assessment of therapy.
ContributorsHussain, Khateeb Hyder (Author) / Kodibagkar, Vikram (Thesis director) / Stabenfeldt, Sarah (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-05
136066-Thumbnail Image.png
Description
Contrast agents in medical imaging can help visualize structural details, distributions of particular cell types, or local environment characteristics. Multi-modal imaging techniques have become increasingly popular for their improved sensitivity, resolution, and ability to correlate structural and functional information. This study addresses the development of dual-modality (magnetic resonance/fluorescence) and dual-functional

Contrast agents in medical imaging can help visualize structural details, distributions of particular cell types, or local environment characteristics. Multi-modal imaging techniques have become increasingly popular for their improved sensitivity, resolution, and ability to correlate structural and functional information. This study addresses the development of dual-modality (magnetic resonance/fluorescence) and dual-functional (thermometry/detection) nanoprobes for enhanced tissue imaging.
ContributorsHemzacek, Katherine Leigh (Author) / Kodibagkar, Vikram (Thesis director) / Stabenfeldt, Sarah (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
132964-Thumbnail Image.png
Description
In epilepsy, malformations that cause seizures often require surgery. The purpose of this research is to join forces with the Multi-Center Epilepsy Lesion Detection (MELD) project at University College London (UCL) in order to improve the process of detecting lesions in patients with drug-resistant epilepsy. This, in turn, will improve

In epilepsy, malformations that cause seizures often require surgery. The purpose of this research is to join forces with the Multi-Center Epilepsy Lesion Detection (MELD) project at University College London (UCL) in order to improve the process of detecting lesions in patients with drug-resistant epilepsy. This, in turn, will improve surgical outcomes via more structured surgical planning. It is a global effort, with more than 20 sites across 5 continents. The targeted populations for this study include patients whose epilepsy stems from Focal Cortical Dysplasia. Focal Cortical Dysplasia is an abnormality of cortical development, and causes most of the drug-resistant epilepsy. Currently, the creators of MELD have developed a set of protocols which wrap various
commands designed to streamline post-processing of MRI images. Using this partnership, the Applied Neuroscience and Technology Lab at PCH has been able to complete production of a post-processing pipeline which integrates locally sourced smoothing techniques to help identify lesions in patients with evidence of Focal Cortical Dysplasia. The end result is a system in which a patient with epilepsy may experience more successful post-surgical results due to the
combination of a lesion detection mechanism and the radiologist using their trained eye in the presurgical stages. As one of the main points of this work is the global aspect of it, Barrett thesis funding was dedicated for a trip to London in order to network with other MELD project collaborators. This was a successful trip for the project as a whole in addition to this particular thesis. The ability to troubleshoot problems with one another in a room full of subject matter
experts allowed for a high level of discussion and learning. Future work includes implementing machine learning approaches which consider all morphometry parameters simultaneously.
ContributorsHumphreys, Zachary William (Author) / Kodibagkar, Vikram (Thesis director) / Foldes, Stephen (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133009-Thumbnail Image.png
Description
Epileptic encephalopathies (EE) are genetic or environmentally-caused conditions that cause “catastrophic” damage or degradation to the sensory, cognitive, and behavioral centers of the brain. Whole-exome sequencing identified de novo heterozygous missense mutations within the DNM1 gene of five pediatric patients with epileptic encephalopathies. DNM1 encodes for the dynamin-1 protein which

Epileptic encephalopathies (EE) are genetic or environmentally-caused conditions that cause “catastrophic” damage or degradation to the sensory, cognitive, and behavioral centers of the brain. Whole-exome sequencing identified de novo heterozygous missense mutations within the DNM1 gene of five pediatric patients with epileptic encephalopathies. DNM1 encodes for the dynamin-1 protein which is involved in endocytosis and synaptic recycling, and it is a member of dynamin GTPase. The zebrafish, an alternative model system for drug discovery, was utilized to develop a novel model for dynamin-1 epileptic encephalopathy through a small molecule inhibitor. The model system mimicked human epilepsy caused by DNM1 mutations and identified potential biochemical pathways involved in the production of this phenotype. The use of microinjections of mutated DNM1 verified phenotypes and was utilized to determine safe and effective antiepileptic drugs (AEDs) for treatment of this specific EE. This zebrafish dynamin-1 epileptic encephalopathy model has potential uses for drug discovery and investigation of this rare childhood disorder.
ContributorsMills, Gabrielle Corley (Author) / Kodibagkar, Vikram (Thesis director) / Rangasamy, Sampath (Committee member) / School of Human Evolution & Social Change (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
135102-Thumbnail Image.png
Description
Magnetic resonance imaging (MRI) of changes in metabolic activity in tumors and metabolic abnormalities can provide a window to understanding the complex behavior of malignant tumors. Both diagnostics and treatment options can be improved through the further comprehension of the processes that contribute to tumor malignancy and growth. By detecting

Magnetic resonance imaging (MRI) of changes in metabolic activity in tumors and metabolic abnormalities can provide a window to understanding the complex behavior of malignant tumors. Both diagnostics and treatment options can be improved through the further comprehension of the processes that contribute to tumor malignancy and growth. By detecting and disturbing this activity through personalized treatments, it is the hope to provide better diagnostics and care to patients. Experimenting with multicellular tumor spheroids (MCTS) allows for a rapid, inexpensive and convenient solution to studying multiple in vitro tumors. High quality magnetic resonance images of small samples, such as spheroid, however, are difficult to achieve with current radio frequency coils. In addition, in order for the information provided by these scans to accurately represent the interactions and metabolic activity in vivo, there is a need for a perfused vascular network. A perfused vascular network has the potential to improve metabolic realism and particle transport within a tumor spheroid. By creating a more life-like cancer model and allowing the progressive imaging of metabolic functions of such small samples, a better, more efficient mode of studying metabolic activity in cancer can be created and research efforts can expand. The progress described in this paper attempts to address both of these current shortcomings of metabolic cancer research and offers potential solutions, while acknowledging the potential of future work to improve cancer research with MCTS.
ContributorsTobey, John Paul (Author) / Kodibagkar, Vikram (Thesis director) / Sadleir, Rosalind (Committee member) / Barrett, The Honors College (Contributor)
Created2016-12
135480-Thumbnail Image.png
Description
Compressed sensing magnetic resonance spectroscopic imaging (MRSI) is a noninvasive and in vivo potential diagnostic technique for cancer imaging. This technique undersamples the distribution of specific cancer biomarkers within an MR image as well as changes in the temporal dimension and subsequently reconstructs the missing data. This technique has been

Compressed sensing magnetic resonance spectroscopic imaging (MRSI) is a noninvasive and in vivo potential diagnostic technique for cancer imaging. This technique undersamples the distribution of specific cancer biomarkers within an MR image as well as changes in the temporal dimension and subsequently reconstructs the missing data. This technique has been shown to retain a high level of fidelity even with an acceleration factor of 5. Currently there exist several different scanner types that each have their separate analytical methods in MATLAB. A graphical user interface (GUI) was created to facilitate a single computing platform for these different scanner types in order to improve the ease and efficiency with which researchers and clinicians interact with this technique. A GUI was successfully created for both prospective and retrospective MRSI data analysis. This GUI retained the original high fidelity of the reconstruction technique and gave the user the ability to load data, load reference images, display intensity maps, display spectra mosaics, generate a mask, display the mask, display kspace and save the corresponding spectra, reconstruction, and mask files. Parallelization of the reconstruction algorithm was explored but implementation was ultimately unsuccessful. Future work could consist of integrating this parallelization method, adding intensity overlay functionality and improving aesthetics.
ContributorsLammers, Luke Michael (Author) / Kodibagkar, Vikram (Thesis director) / Hu, Harry (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05