Matching Items (4)
Filtering by

Clear all filters

141463-Thumbnail Image.png
Description

Five immunocompetent C57BL/6-cBrd/cBrd/Cr (albino C57BL/6) mice were injected with GL261-luc2 cells, a cell line sharing characteristics of human glioblastoma multiforme (GBM). The mice were imaged using magnetic resonance (MR) at five separate time points to characterize growth and development of the tumor. After 25 days, the final tumor volumes of

Five immunocompetent C57BL/6-cBrd/cBrd/Cr (albino C57BL/6) mice were injected with GL261-luc2 cells, a cell line sharing characteristics of human glioblastoma multiforme (GBM). The mice were imaged using magnetic resonance (MR) at five separate time points to characterize growth and development of the tumor. After 25 days, the final tumor volumes of the mice varied from 12 mm3 to 62 mm3, even though mice were inoculated from the same tumor cell line under carefully controlled conditions. We generated hypotheses to explore large variances in final tumor size and tested them with our simple reaction-diffusion model in both a 3-dimensional (3D) finite difference method and a 2-dimensional (2D) level set method. The parameters obtained from a best-fit procedure, designed to yield simulated tumors as close as possible to the observed ones, vary by an order of magnitude between the three mice analyzed in detail. These differences may reflect morphological and biological variability in tumor growth, as well as errors in the mathematical model, perhaps from an oversimplification of the tumor dynamics or nonidentifiability of parameters. Our results generate parameters that match other experimental in vitro and in vivo measurements. Additionally, we calculate wave speed, which matches with other rat and human measurements.

ContributorsRutter, Erica (Author) / Stepien, Tracy (Author) / Anderies, Barrett (Author) / Plasencia, Jonathan (Author) / Woolf, Eric C. (Author) / Scheck, Adrienne C. (Author) / Turner, Gregory H. (Author) / Liu, Qingwei (Author) / Frakes, David (Author) / Kodibagkar, Vikram (Author) / Kuang, Yang (Author) / Preul, Mark C. (Author) / Kostelich, Eric (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-05-31
128500-Thumbnail Image.png
Description

Nanoparticle (NP) based therapeutic and theranostic agents have been developed for various diseases, yet application to neural disease/injury is restricted by the blood-brain-barrier (BBB). Traumatic brain injury (TBI) results in a host of pathological alterations, including transient breakdown of the BBB, thus opening a window for NP delivery to the

Nanoparticle (NP) based therapeutic and theranostic agents have been developed for various diseases, yet application to neural disease/injury is restricted by the blood-brain-barrier (BBB). Traumatic brain injury (TBI) results in a host of pathological alterations, including transient breakdown of the BBB, thus opening a window for NP delivery to the injured brain tissue. This study focused on investigating the spatiotemporal accumulation of different sized NPs after TBI. Specifically, animal cohorts sustaining a controlled cortical impact injury received an intravenous injection of PEGylated NP cocktail (20, 40, 100, and 500 nm, each with a unique fluorophore) immediately (0 h), 2 h, 5 h, 12 h, or 23 h after injury. NPs were allowed to circulate for 1 h before perfusion and brain harvest. Confocal microscopy demonstrated peak NP accumulation within the injury penumbra 1 h post-injury. An inverse relationship was found between NP size and their continued accumulation within the penumbra. NP accumulation preferentially occurred in the primary motor and somatosensory areas of the injury penumbra as compared to the parietal association and visual area. Thus, we characterized the accumulation of particles up to 500 nm at different times acutely after injury, indicating the potential of NP-based TBI theranostics in the acute period after injury.

Created2016-07-22
128835-Thumbnail Image.png
Description

Background: The successful treatment of malignant gliomas remains a challenge despite the current standard of care, which consists of surgery, radiation and temozolomide. Advances in the survival of brain cancer patients require the design of new therapeutic approaches that take advantage of common phenotypes such as the altered metabolism found in

Background: The successful treatment of malignant gliomas remains a challenge despite the current standard of care, which consists of surgery, radiation and temozolomide. Advances in the survival of brain cancer patients require the design of new therapeutic approaches that take advantage of common phenotypes such as the altered metabolism found in cancer cells. It has therefore been postulated that the high-fat, low-carbohydrate, adequate protein ketogenic diet (KD) may be useful in the treatment of brain tumors. We have demonstrated that the KD enhances survival and potentiates standard therapy in a mouse model of malignant glioma, yet the mechanisms are not fully understood.

Methods: To explore the effects of the KD on various aspects of tumor growth and progression, we used the immunocompetent, syngeneic GL261-Luc2 mouse model of malignant glioma.

Results: Tumors from animals maintained on KD showed reduced expression of the hypoxia marker carbonic anhydrase 9, hypoxia inducible factor 1-alpha, and decreased activation of nuclear factor kappa B. Additionally, tumors from animals maintained on KD had reduced tumor microvasculature and decreased expression of vascular endothelial growth factor receptor 2, matrix metalloproteinase-2 and vimentin. Peritumoral edema was significantly reduced in animals fed the KD and protein analyses showed altered expression of zona occludens-1 and aquaporin-4.

Conclusions: The KD directly or indirectly alters the expression of several proteins involved in malignant progression and may be a useful tool for the treatment of gliomas.

ContributorsWoolf, Eric (Author) / Curley, Kara L. (Author) / Liu, Qingwei (Author) / Turner, Gregory H. (Author) / Charlton, Julie A. (Author) / Preul, Mark C. (Author) / Scheck, Adrienne C. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-06-17
129224-Thumbnail Image.png
Description

Background: Magnetic Resonance Spectroscopic Imaging (MRSI) has wide applicability for non-invasive biochemical assessment in clinical and pre-clinical applications but suffers from long scan times. Compressed sensing (CS) has been successfully applied to clinical H-1 MRSI, however a detailed evaluation of CS for conventional chemical shift imaging is lacking. Here we

Background: Magnetic Resonance Spectroscopic Imaging (MRSI) has wide applicability for non-invasive biochemical assessment in clinical and pre-clinical applications but suffers from long scan times. Compressed sensing (CS) has been successfully applied to clinical H-1 MRSI, however a detailed evaluation of CS for conventional chemical shift imaging is lacking. Here we evaluate the performance of CS accelerated MRSI, and specifically apply it to accelerate Na-23-MRSI on mouse hearts in vivo at 9.4 T.

Methods: Synthetic phantom data representing a simplified section across a mouse thorax were used to evaluate the fidelity of the CS reconstruction for varying levels of under-sampling, resolution and signal-to-noise ratios (SNR). The amplitude of signals arising from within a compartment, and signal contamination arising from outside the compartment relative to noise-free Fourier-transformed (FT) data were determined. Simulation results were subsequently verified experimentally in phantoms and in three mouse hearts in vivo.

Results: CS reconstructed MRSI data are scaled linearly relative to absolute signal intensities from the fully-sampled FT reconstructed case (R-2 > 0.8, p-value < 0.001). Higher acceleration factors resulted in a denoising of the reconstructed spectra, but also in an increased blurring of compartment boundaries, particularly at lower spatial resolutions. Increasing resolution and SNR decreased cross-compartment contamination and yielded signal amplitudes closer to the FT data. Proof-of-concept high-resolution, 3-fold accelerated Na-23-amplitude maps of murine myocardium could be obtained within similar to 23 mins.

Conclusions: Relative signal amplitudes (i.e. metabolite ratios) and absolute quantification of metabolite concentrations can be accurately determined with up to 5-fold under-sampled, CS-reconstructed MRSI. Although this work focused on murine cardiac Na-23-MRSI, the results are equally applicable to other nuclei and tissues (e.g. H-1 MRSI in brain). Significant reduction in MRSI scan time will reduce the burden on the subject, increase scanner throughput, and may open new avenues for (pre-) clinical metabolic studies.

ContributorsMaguire, Mahon L. (Author) / Geethanath, Sairam (Author) / Lygate, Craig A. (Author) / Kodibagkar, Vikram (Author) / Schneider, Juergen E. (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-06-15