Matching Items (10)
156174-Thumbnail Image.png
Description
Heart transplantation is the final treatment option for end-stage heart failure. In the United States, 70 pediatric patients die annually on the waitlist while 800 well-functioning organs get discarded. Concern for potential size-mismatch is one source of allograft waste and high waitlist mortality. Clinicians use the donor-recipient body weight (DRBW)

Heart transplantation is the final treatment option for end-stage heart failure. In the United States, 70 pediatric patients die annually on the waitlist while 800 well-functioning organs get discarded. Concern for potential size-mismatch is one source of allograft waste and high waitlist mortality. Clinicians use the donor-recipient body weight (DRBW) ratio, a standalone metric, to evaluate allograft size-match. However, this body weight metric is far removed from cardiac anatomy and neglects an individual’s anatomical variations. This thesis body of work developed a novel virtual heart transplant fit assessment tool and investigated the tool’s clinical utility to help clinicians safely expand patient donor pools.

The tool allowed surgeons to take an allograft reconstruction and fuse it to a patient’s CT or MR medical image for virtual fit assessment. The allograft is either a reconstruction of the donor’s actual heart (from CT or MR images) or an analogue from a health heart library. The analogue allograft geometry is identified from gross donor parameters using a regression model build herein. The need for the regression model is donor images may not exist or they may not become available within the time-window clinicians have to make a provisional acceptance of an offer.

The tool’s assessment suggested > 20% of upper DRBW listings could have been increased at Phoenix Children’s Hospital (PCH). Upper DRBW listings in the UNOS national database was statistically smaller than at PCH (p-values: < 0.001). Delayed sternal closure and surgeon perceived complication variables had an association (p-value: 0.000016) with 9 of the 11 cases that surgeons had perceived fit-related complications had delayed closures (p-value: 0.034809).

A tool to assess allograft size-match has been developed. Findings warrant future preclinical and clinical prospective studies to further assess the tool’s clinical utility.
ContributorsPlasencia, Jonathan (Author) / Frakes, David H (Thesis advisor) / Kodibagkar, Vikram (Thesis advisor) / Sadleir, Rosalind (Committee member) / Kamarianakis, Yiannis (Committee member) / Zangwill, Steven (Committee member) / Pophal, Stephen (Committee member) / Arizona State University (Publisher)
Created2018
135355-Thumbnail Image.png
Description
Glioblastoma multiforme (GBM) is a malignant, aggressive and infiltrative cancer of the central nervous system with a median survival of 14.6 months with standard care. Diagnosis of GBM is made using medical imaging such as magnetic resonance imaging (MRI) or computed tomography (CT). Treatment is informed by medical images and

Glioblastoma multiforme (GBM) is a malignant, aggressive and infiltrative cancer of the central nervous system with a median survival of 14.6 months with standard care. Diagnosis of GBM is made using medical imaging such as magnetic resonance imaging (MRI) or computed tomography (CT). Treatment is informed by medical images and includes chemotherapy, radiation therapy, and surgical removal if the tumor is surgically accessible. Treatment seldom results in a significant increase in longevity, partly due to the lack of precise information regarding tumor size and location. This lack of information arises from the physical limitations of MR and CT imaging coupled with the diffusive nature of glioblastoma tumors. GBM tumor cells can migrate far beyond the visible boundaries of the tumor and will result in a recurring tumor if not killed or removed. Since medical images are the only readily available information about the tumor, we aim to improve mathematical models of tumor growth to better estimate the missing information. Particularly, we investigate the effect of random variation in tumor cell behavior (anisotropy) using stochastic parameterizations of an established proliferation-diffusion model of tumor growth. To evaluate the performance of our mathematical model, we use MR images from an animal model consisting of Murine GL261 tumors implanted in immunocompetent mice, which provides consistency in tumor initiation and location, immune response, genetic variation, and treatment. Compared to non-stochastic simulations, stochastic simulations showed improved volume accuracy when proliferation variability was high, but diffusion variability was found to only marginally affect tumor volume estimates. Neither proliferation nor diffusion variability significantly affected the spatial distribution accuracy of the simulations. While certain cases of stochastic parameterizations improved volume accuracy, they failed to significantly improve simulation accuracy overall. Both the non-stochastic and stochastic simulations failed to achieve over 75% spatial distribution accuracy, suggesting that the underlying structure of the model fails to capture one or more biological processes that affect tumor growth. Two biological features that are candidates for further investigation are angiogenesis and anisotropy resulting from differences between white and gray matter. Time-dependent proliferation and diffusion terms could be introduced to model angiogenesis, and diffusion weighed imaging (DTI) could be used to differentiate between white and gray matter, which might allow for improved estimates brain anisotropy.
ContributorsAnderies, Barrett James (Author) / Kostelich, Eric (Thesis director) / Kuang, Yang (Committee member) / Stepien, Tracy (Committee member) / Harrington Bioengineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
148228-Thumbnail Image.png
Description

2D fetal echocardiography (ECHO) can be used for monitoring heart development in utero. This study’s purpose is to empirically model normal fetal heart growth and function changes during development by ECHO and compare these to fetuses diagnosed with and without cardiomyopathy with diabetic mothers. There are existing mathematical models describing

2D fetal echocardiography (ECHO) can be used for monitoring heart development in utero. This study’s purpose is to empirically model normal fetal heart growth and function changes during development by ECHO and compare these to fetuses diagnosed with and without cardiomyopathy with diabetic mothers. There are existing mathematical models describing fetal heart development but they warrant revalidation and adjustment. 377 normal fetuses with healthy mothers, 98 normal fetuses with diabetic mothers, and 37 fetuses with cardiomyopathy and diabetic mothers had their cardiac structural dimensions, cardiothoracic ratio, valve flow velocities, and heart rates measured by fetal ECHO in a retrospective chart review. Cardiac features were fitted to linear functions, with respect to gestational age, femur length, head circumference, and biparietal diameter and z-scores were created to model normal fetal growth for all parameters. These z-scores were used to assess what metrics had no difference in means between the normal fetuses of both healthy and diabetic mothers but differed from those diagnosed with cardiomyopathy. It was found that functional metrics like mitral and tricuspid E wave and pulmonary velocity could be important predictors for cardiomyopathy when fitted by gestational age, femur length, head circumference, and biparietal diameter. Additionally, aortic and tricuspid annulus diameters when fitted to estimated gestational age showed potential to be predictors for fetal cardiomyopathy. While the metrics overlapped over their full range, combining them together may have the potential for predicting cardiomyopathy in utero. Future directions of this study will explore creating a classifier model that can predict cardiomyopathy using the metrics assessed in this study.

ContributorsMishra, Shambhavi (Co-author) / Numani, Asfia (Co-author) / Sweazea, Karen (Thesis director) / Plasencia, Jonathan (Committee member) / Economics Program in CLAS (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
141463-Thumbnail Image.png
Description

Five immunocompetent C57BL/6-cBrd/cBrd/Cr (albino C57BL/6) mice were injected with GL261-luc2 cells, a cell line sharing characteristics of human glioblastoma multiforme (GBM). The mice were imaged using magnetic resonance (MR) at five separate time points to characterize growth and development of the tumor. After 25 days, the final tumor volumes of

Five immunocompetent C57BL/6-cBrd/cBrd/Cr (albino C57BL/6) mice were injected with GL261-luc2 cells, a cell line sharing characteristics of human glioblastoma multiforme (GBM). The mice were imaged using magnetic resonance (MR) at five separate time points to characterize growth and development of the tumor. After 25 days, the final tumor volumes of the mice varied from 12 mm3 to 62 mm3, even though mice were inoculated from the same tumor cell line under carefully controlled conditions. We generated hypotheses to explore large variances in final tumor size and tested them with our simple reaction-diffusion model in both a 3-dimensional (3D) finite difference method and a 2-dimensional (2D) level set method. The parameters obtained from a best-fit procedure, designed to yield simulated tumors as close as possible to the observed ones, vary by an order of magnitude between the three mice analyzed in detail. These differences may reflect morphological and biological variability in tumor growth, as well as errors in the mathematical model, perhaps from an oversimplification of the tumor dynamics or nonidentifiability of parameters. Our results generate parameters that match other experimental in vitro and in vivo measurements. Additionally, we calculate wave speed, which matches with other rat and human measurements.

ContributorsRutter, Erica (Author) / Stepien, Tracy (Author) / Anderies, Barrett (Author) / Plasencia, Jonathan (Author) / Woolf, Eric C. (Author) / Scheck, Adrienne C. (Author) / Turner, Gregory H. (Author) / Liu, Qingwei (Author) / Frakes, David (Author) / Kodibagkar, Vikram (Author) / Kuang, Yang (Author) / Preul, Mark C. (Author) / Kostelich, Eric (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-05-31
157808-Thumbnail Image.png
Description
Deep learning is a sub-field of machine learning in which models are developed to imitate the workings of the human brain in processing data and creating patterns for decision making. This dissertation is focused on developing deep learning models for medical imaging analysis of different modalities for different tasks including

Deep learning is a sub-field of machine learning in which models are developed to imitate the workings of the human brain in processing data and creating patterns for decision making. This dissertation is focused on developing deep learning models for medical imaging analysis of different modalities for different tasks including detection, segmentation and classification. Imaging modalities including digital mammography (DM), magnetic resonance imaging (MRI), positron emission tomography (PET) and computed tomography (CT) are studied in the dissertation for various medical applications. The first phase of the research is to develop a novel shallow-deep convolutional neural network (SD-CNN) model for improved breast cancer diagnosis. This model takes one type of medical image as input and synthesizes different modalities for additional feature sources; both original image and synthetic image are used for feature generation. This proposed architecture is validated in the application of breast cancer diagnosis and proved to be outperforming the competing models. Motivated by the success from the first phase, the second phase focuses on improving medical imaging synthesis performance with advanced deep learning architecture. A new architecture named deep residual inception encoder-decoder network (RIED-Net) is proposed. RIED-Net has the advantages of preserving pixel-level information and cross-modality feature transferring. The applicability of RIED-Net is validated in breast cancer diagnosis and Alzheimer’s disease (AD) staging. Recognizing medical imaging research often has multiples inter-related tasks, namely, detection, segmentation and classification, my third phase of the research is to develop a multi-task deep learning model. Specifically, a feature transfer enabled multi-task deep learning model (FT-MTL-Net) is proposed to transfer high-resolution features from segmentation task to low-resolution feature-based classification task. The application of FT-MTL-Net on breast cancer detection, segmentation and classification using DM images is studied. As a continuing effort on exploring the transfer learning in deep models for medical application, the last phase is to develop a deep learning model for both feature transfer and knowledge from pre-training age prediction task to new domain of Mild cognitive impairment (MCI) to AD conversion prediction task. It is validated in the application of predicting MCI patients’ conversion to AD with 3D MRI images.
ContributorsGao, Fei (Author) / Wu, Teresa (Thesis advisor) / Li, Jing (Committee member) / Yan, Hao (Committee member) / Patel, Bhavika (Committee member) / Arizona State University (Publisher)
Created2019
Description

Collective cell migration plays a substantial role in maintaining the cohesion of epithelial cell layers and in wound healing. A number of mathematical models of this process have been developed, all of which reduce to essentially a reaction-diffusion equation with diffusion and proliferation terms that depend on material assumptions about

Collective cell migration plays a substantial role in maintaining the cohesion of epithelial cell layers and in wound healing. A number of mathematical models of this process have been developed, all of which reduce to essentially a reaction-diffusion equation with diffusion and proliferation terms that depend on material assumptions about the cell layer. In this paper we extend a one-dimensional mathematical model of cell layer migration of Mi et al. [Biophys. J., 93 (2007), pp. 3745–3752] to incorporate stretch-dependent proliferation, and show that this formulation reduces to a generalized Stefan problem for the density of the layer. We solve numerically the resulting partial differential equation system using an adaptive finite difference method and show that the solutions converge to self-similar or traveling wave solutions. We analyze self-similar solutions for cases with no prolifera- tion, and necessary and sufficient conditions for existence and uniqueness of traveling solutions for a wide range of material assumptions about the cell layer.

ContributorsStepien, Tracy (Author) / Swigon, David (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-11-30
128426-Thumbnail Image.png
Description

Atypical brainstem modulation of pain might contribute to changes in sensory processing typical of migraine. The study objective was to investigate whether migraine is associated with brainstem structural alterations that correlate with this altered pain processing. MRI T1-weighted images of 55 migraine patients and 58 healthy controls were used to:

Atypical brainstem modulation of pain might contribute to changes in sensory processing typical of migraine. The study objective was to investigate whether migraine is associated with brainstem structural alterations that correlate with this altered pain processing. MRI T1-weighted images of 55 migraine patients and 58 healthy controls were used to: (1) create deformable mesh models of the brainstem that allow for shape analyses; (2) calculate volumes of the midbrain, pons, medulla and the superior cerebellar peduncles; (3) interrogate correlations between regional brainstem volumes, cutaneous heat pain thresholds, and allodynia symptoms. Migraineurs had smaller midbrain volumes (healthy controls = 61.28 mm3, SD = 5.89; migraineurs = 58.80 mm3, SD = 6.64; p = 0.038), and significant (p < 0.05) inward deformations in the ventral midbrain and pons, and outward deformations in the lateral medulla and dorsolateral pons relative to healthy controls. Migraineurs had a negative correlation between ASC-12 allodynia symptom severity with midbrain volume (r = − 0.32; p = 0.019) and a positive correlation between cutaneous heat pain thresholds with medulla (r = 0.337; p = 0.012) and cerebellar peduncle volumes (r = 0.435; p = 0.001). Migraineurs with greater symptoms of allodynia have smaller midbrain volumes and migraineurs with lower heat pain thresholds have smaller medulla and cerebellar peduncles. The brainstem likely plays a role in altered sensory processing in migraine and brainstem structure might reflect severity of allodynia and hypersensitivity to pain in migraine.

ContributorsChong, Catherine D. (Author) / Plasencia, Jonathan (Author) / Frakes, David (Author) / Schwedt, Todd J. (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-11-02
128835-Thumbnail Image.png
Description

Background: The successful treatment of malignant gliomas remains a challenge despite the current standard of care, which consists of surgery, radiation and temozolomide. Advances in the survival of brain cancer patients require the design of new therapeutic approaches that take advantage of common phenotypes such as the altered metabolism found in

Background: The successful treatment of malignant gliomas remains a challenge despite the current standard of care, which consists of surgery, radiation and temozolomide. Advances in the survival of brain cancer patients require the design of new therapeutic approaches that take advantage of common phenotypes such as the altered metabolism found in cancer cells. It has therefore been postulated that the high-fat, low-carbohydrate, adequate protein ketogenic diet (KD) may be useful in the treatment of brain tumors. We have demonstrated that the KD enhances survival and potentiates standard therapy in a mouse model of malignant glioma, yet the mechanisms are not fully understood.

Methods: To explore the effects of the KD on various aspects of tumor growth and progression, we used the immunocompetent, syngeneic GL261-Luc2 mouse model of malignant glioma.

Results: Tumors from animals maintained on KD showed reduced expression of the hypoxia marker carbonic anhydrase 9, hypoxia inducible factor 1-alpha, and decreased activation of nuclear factor kappa B. Additionally, tumors from animals maintained on KD had reduced tumor microvasculature and decreased expression of vascular endothelial growth factor receptor 2, matrix metalloproteinase-2 and vimentin. Peritumoral edema was significantly reduced in animals fed the KD and protein analyses showed altered expression of zona occludens-1 and aquaporin-4.

Conclusions: The KD directly or indirectly alters the expression of several proteins involved in malignant progression and may be a useful tool for the treatment of gliomas.

ContributorsWoolf, Eric (Author) / Curley, Kara L. (Author) / Liu, Qingwei (Author) / Turner, Gregory H. (Author) / Charlton, Julie A. (Author) / Preul, Mark C. (Author) / Scheck, Adrienne C. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-06-17
128818-Thumbnail Image.png
Description

Background: Genetic profiling represents the future of neuro-oncology but suffers from inadequate biopsies in heterogeneous tumors like Glioblastoma (GBM). Contrast-enhanced MRI (CE-MRI) targets enhancing core (ENH) but yields adequate tumor in only ~60% of cases. Further, CE-MRI poorly localizes infiltrative tumor within surrounding non-enhancing parenchyma, or brain-around-tumor (BAT), despite the importance

Background: Genetic profiling represents the future of neuro-oncology but suffers from inadequate biopsies in heterogeneous tumors like Glioblastoma (GBM). Contrast-enhanced MRI (CE-MRI) targets enhancing core (ENH) but yields adequate tumor in only ~60% of cases. Further, CE-MRI poorly localizes infiltrative tumor within surrounding non-enhancing parenchyma, or brain-around-tumor (BAT), despite the importance of characterizing this tumor segment, which universally recurs. In this study, we use multiple texture analysis and machine learning (ML) algorithms to analyze multi-parametric MRI, and produce new images indicating tumor-rich targets in GBM.

Methods: We recruited primary GBM patients undergoing image-guided biopsies and acquired pre-operative MRI: CE-MRI, Dynamic-Susceptibility-weighted-Contrast-enhanced-MRI, and Diffusion Tensor Imaging. Following image coregistration and region of interest placement at biopsy locations, we compared MRI metrics and regional texture with histologic diagnoses of high- vs low-tumor content (≥80% vs <80% tumor nuclei) for corresponding samples. In a training set, we used three texture analysis algorithms and three ML methods to identify MRI-texture features that optimized model accuracy to distinguish tumor content. We confirmed model accuracy in a separate validation set.

Results: We collected 82 biopsies from 18 GBMs throughout ENH and BAT. The MRI-based model achieved 85% cross-validated accuracy to diagnose high- vs low-tumor in the training set (60 biopsies, 11 patients). The model achieved 81.8% accuracy in the validation set (22 biopsies, 7 patients).

Conclusion: Multi-parametric MRI and texture analysis can help characterize and visualize GBM’s spatial histologic heterogeneity to identify regional tumor-rich biopsy targets.

ContributorsHu, Leland S. (Author) / Ning, Shuluo (Author) / Eschbacher, Jennifer M. (Author) / Gaw, Nathan (Author) / Dueck, Amylou C. (Author) / Smith, Kris A. (Author) / Nakaji, Peter (Author) / Plasencia, Jonathan (Author) / Ranjbar, Sara (Author) / Price, Stephen J. (Author) / Tran, Nhan (Author) / Loftus, Joseph (Author) / Jenkins, Robert (Author) / O'Neill, Brian P. (Author) / Elmquist, William (Author) / Baxter, Leslie C. (Author) / Gao, Fei (Author) / Frakes, David (Author) / Karis, John P. (Author) / Zwart, Christine (Author) / Swanson, Kristin R. (Author) / Sarkaria, Jann (Author) / Wu, Teresa (Author) / Mitchell, J. Ross (Author) / Li, Jing (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2015-11-24
128927-Thumbnail Image.png
Description

The Gray-faced Sengi (Rhynchocyon udzungwensis) is a newly-discovered species of sengi (elephant-shrew) and is the largest known extant representative of the order Macroscelidea. The discovery of R. udzungwensis provides an opportunity to investigate the scaling relationship between brain size and body size within Macroscelidea, and to compare this allometry among

The Gray-faced Sengi (Rhynchocyon udzungwensis) is a newly-discovered species of sengi (elephant-shrew) and is the largest known extant representative of the order Macroscelidea. The discovery of R. udzungwensis provides an opportunity to investigate the scaling relationship between brain size and body size within Macroscelidea, and to compare this allometry among insectivorous species of Afrotheria and other eutherian insectivores. We performed a spin-echo magnetic resonance imaging (MRI) scan on a preserved adult specimen of R. udzungwensis using a 7-Tesla high-field MR imaging system. The brain was manually segmented and its volume was compiled into a dataset containing previously-published allometric data on 56 other species of insectivore-grade mammals including representatives of Afrotheria, Soricomorpha and Erinaceomorpha. Results of log-linear regression indicate that R. udzungwensis exhibits a brain size that is consistent with the allometric trend described by other members of its order. Inter-specific comparisons indicate that macroscelideans as a group have relatively large brains when compared with similarly-sized terrestrial mammals that also share a similar diet. This high degree of encephalization within sengis remains robust whether sengis are compared with closely-related insectivorous afrotheres, or with more-distantly-related insectivorous laurasiatheres.

ContributorsKaufman, Jason A. (Author) / Turner, Gregory H. (Author) / Holroyd, Patricia A. (Author) / Rovero, Francesco (Author) / Grossman, Ari (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-03-13