Matching Items (21)
Filtering by

Clear all filters

128154-Thumbnail Image.png
Description

Thousands of chemicals have been identified as contaminants of emerging concern (CECs), but prioritizing them concerning ecological and human health risks is challenging. We explored the use of sewage treatment plants as chemical observatories to conveniently identify persistent and bioaccumulative CECs, including toxic organohalides. Nationally representative samples of sewage sludge

Thousands of chemicals have been identified as contaminants of emerging concern (CECs), but prioritizing them concerning ecological and human health risks is challenging. We explored the use of sewage treatment plants as chemical observatories to conveniently identify persistent and bioaccumulative CECs, including toxic organohalides. Nationally representative samples of sewage sludge (biosolids) were analyzed for 231 CECs, of which 123 were detected. Ten of the top 11 most abundant CECs in biosolids were found to be high-production volume chemicals, eight of which representing priority chemicals, including three flame retardants, three surfactants and two antimicrobials. A comparison of chemicals detected in nationally representative biological specimens from humans and municipal biosolids revealed 70% overlap. This observed co-occurrence of contaminants in both matrices suggests that the analysis of sewage sludge can inform human health risk assessments by providing current information on toxic exposures in human populations and associated body burdens of harmful environmental pollutants.

ContributorsVenkatesan, Arjunkrishna (Author) / Halden, Rolf (Author) / Biodesign Institute (Contributor)
Created2014-01-16
128016-Thumbnail Image.png
Description

The Florence Statement on Triclosan and Triclocarban documents a consensus of more than 200 scientists and medical professionals on the hazards of and lack of demonstrated benefit from common uses of triclosan and triclocarban. These chemicals may be used in thousands of personal care and consumer products as well as

The Florence Statement on Triclosan and Triclocarban documents a consensus of more than 200 scientists and medical professionals on the hazards of and lack of demonstrated benefit from common uses of triclosan and triclocarban. These chemicals may be used in thousands of personal care and consumer products as well as in building materials. Based on extensive peer-reviewed research, this statement concludes that triclosan and triclocarban are environmentally persistent endocrine disruptors that bioaccumulate in and are toxic to aquatic and other organisms. Evidence of other hazards to humans and ecosystems from triclosan and triclocarban is presented along with recommendations intended to prevent future harm from triclosan, triclocarban, and antimicrobial substances with similar properties and effects. Because antimicrobials can have unintended adverse health and environmental impacts, they should only be used when they provide an evidence-based health benefit. Greater transparency is needed in product formulations, and before an antimicrobial is incorporated into a product, the long-term health and ecological impacts should be evaluated.

ContributorsHalden, Rolf (Author) / Lindeman, Avery E. (Author) / Aiello, Allison E. (Author) / Andrews, David (Author) / Arnold, William A. (Author) / Fair, Patricia (Author) / Fuoco, Rebecca E. (Author) / Geer, Laura A. (Author) / Johnson, Paula I. (Author) / Lohmann, Rainer (Author) / McNeill, Kristopher (Author) / Sacks, Victoria P. (Author) / Schettler, Ted (Author) / Weber, Roland (Author) / Zoeller, R. Thomas (Author) / Blum, Arlene (Author) / Biodesign Institute (Contributor)
Created2017-06-20
128412-Thumbnail Image.png
Description

Background: Methylmercury (MeHg) may affect fetal growth; however, prior research often lacked assessment of mercury speciation, confounders, and interactions.

Objective: Our objective was to assess the relationship between MeHg and fetal growth as well as the potential for confounding or interaction of this relationship from speciated mercury, fatty acids, selenium, and

Background: Methylmercury (MeHg) may affect fetal growth; however, prior research often lacked assessment of mercury speciation, confounders, and interactions.

Objective: Our objective was to assess the relationship between MeHg and fetal growth as well as the potential for confounding or interaction of this relationship from speciated mercury, fatty acids, selenium, and sex.

Methods: This cross-sectional study includes 271 singletons born in Baltimore, Maryland, 2004–2005. Umbilical cord blood was analyzed for speciated mercury, serum omega-3 highly unsaturated fatty acids (n-3 HUFAs), and selenium. Multivariable linear regression models controlled for gestational age, birth weight, maternal age, parity, pre-pregnancy body mass index, smoking, hypertension, diabetes, selenium, n-3 HUFAs, and inorganic mercury (IHg).

Results: Geometric mean cord blood MeHg was 0.94 μg/L (95% CI: 0.84, 1.07). In adjusted models for ponderal index, βln(MeHg) = –0.045 (g/cm[superscript 3]) × 100 (95% CI: –0.084, –0.005). There was no evidence of a MeHg × sex interaction with ponderal index. Contrastingly, there was evidence of a MeHg × n-3 HUFAs interaction with birth length [among low n-3 HUFAs, βln(MeHg) = 0.40 cm, 95% CI: –0.02, 0.81; among high n-3 HUFAs, βln(MeHg) = –0.15, 95% CI: –0.54, 0.25; p-interaction = 0.048] and head circumference [among low n-3 HUFAs, βln(MeHg) = 0.01 cm, 95% CI: –0.27, 0.29; among high n-3 HUFAs, βln(MeHg) = –0.37, 95% CI: –0.63, –0.10; p-interaction = 0.042]. The association of MeHg with birth weight and ponderal index was affected by n-3 HUFAs, selenium, and IHg. For birth weight, βln(MeHg) without these variables was –16.8 g (95% CI: –75.0, 41.3) versus –29.7 (95% CI: –93.9, 34.6) with all covariates. Corresponding values for ponderal index were –0.030 (g/cm[superscript 3]) × 100 (95% CI: –0.065, 0.005) and –0.045 (95% CI: –0.084, –0005).

Conclusion: We observed an association of increased MeHg with decreased ponderal index. There is evidence for interaction between MeHg and n-3 HUFAs; infants with higher MeHg and n-3 HUFAs had lower birth length and head circumference. These results should be verified with additional studies.

ContributorsWells, Ellen M. (Author) / Herbstman, Julie B. (Author) / Lin, Yu Hong (Author) / Jarrett, Jeffery (Author) / Verdon, Carl P. (Author) / Ward, Cynthia (Author) / Caldwell, Kathleen L. (Author) / Hibbeln, Joseph R. (Author) / Witter, Frank R. (Author) / Halden, Rolf (Author) / Goldman, Lynn R. (Author) / Biodesign Institute (Contributor)
Created2016-06-26
128572-Thumbnail Image.png
Description

We designed and evaluated an active sampling device, using as analytical targets a family of pesticides purported to contribute to honeybee colony collapse disorder. Simultaneous sampling of bulk water and pore water was accomplished using a low-flow, multi-channel pump to deliver water to an array of solid-phase extraction cartridges. Analytes

We designed and evaluated an active sampling device, using as analytical targets a family of pesticides purported to contribute to honeybee colony collapse disorder. Simultaneous sampling of bulk water and pore water was accomplished using a low-flow, multi-channel pump to deliver water to an array of solid-phase extraction cartridges. Analytes were separated using either liquid or gas chromatography, and analysis was performed using tandem mass spectrometry (MS/MS). Achieved recoveries of fipronil and degradates in water spiked to nominal concentrations of 0.1, 1, and 10 ng/L ranged from 77 ± 12 to 110 ± 18%. Method detection limits (MDLs) were as low as 0.040–0.8 ng/L. Extraction and quantitation of total fiproles at a wastewater-receiving wetland yielded concentrations in surface water and pore water ranging from 9.9 ± 4.6 to 18.1 ± 4.6 ng/L and 9.1 ± 3.0 to 12.6 ± 2.1 ng/L, respectively. Detected concentrations were statistically indistinguishable from those determined by conventional, more laborious techniques (p > 0.2 for the three most abundant fiproles). Aside from offering time-averaged sampling capabilities for two phases simultaneously with picogram-per-liter MDLs, the novel methodology eliminates the need for water and sediment transport via in situ solid phase extraction.

ContributorsSupowit, Samuel (Author) / Roll, Isaac (Author) / Dang, Viet D. (Author) / Kroll, Kevin J. (Author) / Denslow, Nancy D. (Author) / Halden, Rolf (Author) / Biodesign Institute (Contributor)
Created2016-02-24
128672-Thumbnail Image.png
Description

The known occurrence of pharmaceuticals in the built and natural water environment, including in drinking water supplies, continues to raise concerns over inadvertent exposures and associated potential health risks in humans and aquatic organisms. At the same time, the number and concentrations of new and existing pharmaceuticals in the water

The known occurrence of pharmaceuticals in the built and natural water environment, including in drinking water supplies, continues to raise concerns over inadvertent exposures and associated potential health risks in humans and aquatic organisms. At the same time, the number and concentrations of new and existing pharmaceuticals in the water environment are destined to increase further in the future as a result of increased consumption of pharmaceuticals by a growing and aging population and ongoing measures to decrease per-capita water consumption. This review examines the occurrence and movement of pharmaceuticals in the built and natural water environment, with special emphasis on contamination of the drinking water supply, and opportunities for sustainable pollution control. We surveyed peer-reviewed publications dealing with quantitative measurements of pharmaceuticals in U.S. drinking water, surface water, groundwater, raw and treated wastewater as well as municipal biosolids. Pharmaceuticals have been observed to reenter the built water environment contained in raw drinking water, and they remain detectable in finished drinking water at concentrations in the ng/L to μg/L range. The greatest promises for minimizing pharmaceutical contamination include source control (for example, inputs from intentional flushing of medications for safe disposal, and sewer overflows), and improving efficiency of treatment facilities.

ContributorsDeo, Randhir P. (Author) / Halden, Rolf (Author) / Biodesign Institute (Contributor)
Created2013-09-11
128439-Thumbnail Image.png
Description

Despite increasing interest in the effects of triclosan and triclocarban on human biology, current knowledge is still limited on the impact of these additives to antimicrobial personal care products on the human microbiome. A carefully designed recent study published in mSphere by Poole and colleagues [A. C. Poole et al.,

Despite increasing interest in the effects of triclosan and triclocarban on human biology, current knowledge is still limited on the impact of these additives to antimicrobial personal care products on the human microbiome. A carefully designed recent study published in mSphere by Poole and colleagues [A. C. Poole et al., mSphere 1(3):e00056-15, 2016, http://dx.doi.org/10.1128/mSphere.00056-15] highlights both the power of novel methodologies for microbiome elucidation and the longstanding challenge of employing small-cohort studies to inform risk assessment for chemicals of ubiquitous use in modern society.

ContributorsHalden, Rolf (Author) / Biodesign Institute (Contributor)
Created2016-05-18
128967-Thumbnail Image.png
Description

Background: Buffering to achieve pH control is crucial for successful trichloroethene (TCE) anaerobic bioremediation. Bicarbonate (HCO3−) is the natural buffer in groundwater and the buffer of choice in the laboratory and at contaminated sites undergoing biological treatment with organohalide respiring microorganisms. However, HCO3− also serves as the electron acceptor for hydrogenotrophic

Background: Buffering to achieve pH control is crucial for successful trichloroethene (TCE) anaerobic bioremediation. Bicarbonate (HCO3−) is the natural buffer in groundwater and the buffer of choice in the laboratory and at contaminated sites undergoing biological treatment with organohalide respiring microorganisms. However, HCO3− also serves as the electron acceptor for hydrogenotrophic methanogens and hydrogenotrophic homoacetogens, two microbial groups competing with organohalide respirers for hydrogen (H2). We studied the effect of HCO3− as a buffering agent and the effect of HCO3−-consuming reactions in a range of concentrations (2.5-30 mM) with an initial pH of 7.5 in H2-fed TCE reductively dechlorinating communities containing Dehalococcoides, hydrogenotrophic methanogens, and hydrogenotrophic homoacetogens.

Results: Rate differences in TCE dechlorination were observed as a result of added varying HCO3− concentrations due to H2-fed electrons channeled towards methanogenesis and homoacetogenesis and pH increases (up to 8.7) from biological HCO3− consumption. Significantly faster dechlorination rates were noted at all HCO3− concentrations tested when the pH buffering was improved by providing 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) as an additional buffer. Electron balances and quantitative PCR revealed that methanogenesis was the main electron sink when the initial HCO3− concentrations were 2.5 and 5 mM, while homoacetogenesis was the dominant process and sink when 10 and 30 mM HCO3− were provided initially.

Conclusions: Our study reveals that HCO3− is an important variable for bioremediation of chloroethenes as it has a prominent role as an electron acceptor for methanogenesis and homoacetogenesis. It also illustrates the changes in rates and extent of reductive dechlorination resulting from the combined effect of electron donor competition stimulated by HCO3− and the changes in pH exerted by methanogens and homoacetogens.

ContributorsDelgado, Anca (Author) / Parameswaran, Prathap (Author) / Fajardo-Williams, Devyn (Author) / Halden, Rolf (Author) / Krajmalnik-Brown, Rosa (Author) / Biodesign Institute (Contributor)
Created2012-09-13
127819-Thumbnail Image.png
Description

The Future of Wastewater Sensing workshop is part of a collaboration between Arizona State University Center for Nanotechnology in Society in the School for the Future of Innovation in Society, the Biodesign Institute’s Center for Environmental Security, LC Nano, and the Nano-enabled Water Treatment (NEWT) Systems NSF Engineering Research Center.

The Future of Wastewater Sensing workshop is part of a collaboration between Arizona State University Center for Nanotechnology in Society in the School for the Future of Innovation in Society, the Biodesign Institute’s Center for Environmental Security, LC Nano, and the Nano-enabled Water Treatment (NEWT) Systems NSF Engineering Research Center. The Future of Wastewater Sensing workshop explores how technologies for studying, monitoring, and mining wastewater and sewage sludge might develop in the future, and what consequences may ensue for public health, law enforcement, private industry, regulations and society at large. The workshop pays particular attention to how wastewater sensing (and accompanying research, technologies, and applications) can be innovated, regulated, and used to maximize societal benefit and minimize the risk of adverse outcomes, when addressing critical social and environmental challenges.

ContributorsWithycombe Keeler, Lauren (Researcher) / Halden, Rolf (Researcher) / Selin, Cynthia (Researcher) / Center for Nanotechnology in Society (Contributor)
Created2015-11-01
141462-Thumbnail Image.png
Description

Despite the fact that seizures are commonly associated with autism spectrum disorder (ASD), the effectiveness of treatments for seizures has not been well studied in individuals with ASD. This manuscript reviews both traditional and novel treatments for seizures associated with ASD. Studies were selected by systematically searching major electronic databases

Despite the fact that seizures are commonly associated with autism spectrum disorder (ASD), the effectiveness of treatments for seizures has not been well studied in individuals with ASD. This manuscript reviews both traditional and novel treatments for seizures associated with ASD. Studies were selected by systematically searching major electronic databases and by a panel of experts that treat ASD individuals. Only a few anti-epileptic drugs (AEDs) have undergone carefully controlled trials in ASD, but these trials examined outcomes other than seizures. Several lines of evidence point to valproate, lamotrigine, and levetiracetam as the most effective and tolerable AEDs for individuals with ASD. Limited evidence supports the use of traditional non-AED treatments, such as the ketogenic and modified Atkins diet, multiple subpial transections, immunomodulation, and neurofeedback treatments. Although specific treatments may be more appropriate for specific genetic and metabolic syndromes associated with ASD and seizures, there are few studies which have documented the effectiveness of treatments for seizures for specific syndromes. Limited evidence supports l-carnitine, multivitamins, and N-acetyl-l-cysteine in mitochondrial disease and dysfunction, folinic acid in cerebral folate abnormalities and early treatment with vigabatrin in tuberous sclerosis complex. Finally, there is limited evidence for a number of novel treatments, particularly magnesium with pyridoxine, omega-3 fatty acids, the gluten-free casein-free diet, and low-frequency repetitive transcranial magnetic simulation. Zinc and l-carnosine are potential novel treatments supported by basic research but not clinical studies. This review demonstrates the wide variety of treatments used to treat seizures in individuals with ASD as well as the striking lack of clinical trials performed to support the use of these treatments. Additional studies concerning these treatments for controlling seizures in individuals with ASD are warranted.

ContributorsFrye, Richard E. (Author) / Rossignol, Daniel (Author) / Casanova, Manuel F. (Author) / Brown, Gregory L. (Author) / Martin, Victoria (Author) / Edelson, Stephen (Author) / Coben, Robert (Author) / Lewine, Jeffrey (Author) / Slattery, John C. (Author) / Lau, Chrystal (Author) / Hardy, Paul (Author) / Fatemi, S. Hossein (Author) / Folsom, Timothy D. (Author) / MacFabe, Derrick (Author) / Adams, James (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2013-09-13
141477-Thumbnail Image.png
Description

This manuscript reviews biological abnormalities shared by autism spectrum disorder (ASD) and epilepsy. Two neuropathological findings are shared by ASD and epilepsy: abnormalities in minicolumn architecture and γ-aminobutyric acid (GABA) neurotransmission. The peripheral neuropil, which is the region that contains the inhibition circuits of the minicolumns, has been found to

This manuscript reviews biological abnormalities shared by autism spectrum disorder (ASD) and epilepsy. Two neuropathological findings are shared by ASD and epilepsy: abnormalities in minicolumn architecture and γ-aminobutyric acid (GABA) neurotransmission. The peripheral neuropil, which is the region that contains the inhibition circuits of the minicolumns, has been found to be decreased in the post-mortem ASD brain. ASD and epilepsy are associated with inhibitory GABA neurotransmission abnormalities including reduced GABAA and GABAB subunit expression. These abnormalities can elevate the excitation-to-inhibition balance, resulting in hyperexcitablity of the cortex and, in turn, increase the risk of seizures. Medical abnormalities associated with both epilepsy and ASD are discussed. These include specific genetic syndromes, specific metabolic disorders including disorders of energy metabolism and GABA and glutamate neurotransmission, mineral and vitamin deficiencies, heavy metal exposures and immune dysfunction. Many of these medical abnormalities can result in an elevation of the excitatory-to-inhibitory balance. Fragile X is linked to dysfunction of the mGluR5 receptor and Fragile X, Angelman and Rett syndromes are linked to a reduction in GABA[subscript A] receptor expression. Defects in energy metabolism can reduce GABA interneuron function. Both pyridoxine dependent seizures and succinic semialdehyde dehydrogenase deficiency cause GABA deficiencies while urea cycle defects and phenylketonuria cause abnormalities in glutamate neurotransmission. Mineral deficiencies can cause glutamate and GABA neurotransmission abnormalities and heavy metals can cause mitochondrial dysfunction which disrupts GABA metabolism. Thus, both ASD and epilepsy are associated with similar abnormalities that may alter the excitatory-to-inhibitory balance of the cortex. These parallels may explain the high prevalence of epilepsy in ASD and the elevated prevalence of ASD features in individuals with epilepsy.

ContributorsFrye, Richard E. (Author) / Casanova, Manuel F. (Author) / Fatemi, S. Hossein (Author) / Folsom, Timothy D. (Author) / Reutiman, Teri J. (Author) / Brown, Gregory L. (Author) / Edelson, Stephen M. (Author) / Slattery, John C. (Author) / Adams, James (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-05-10