Matching Items (67)
134138-Thumbnail Image.png
Description
This thesis was prepared by Tyler Maynard and Hayley Monroe, who are students at Arizona State University studying to complete their B.S.E.s in Civil Engineering and Construction Engineering, respectively. Both students are members of Barrett, the Honors College, at Arizona State University, and have prepared the following document for the

This thesis was prepared by Tyler Maynard and Hayley Monroe, who are students at Arizona State University studying to complete their B.S.E.s in Civil Engineering and Construction Engineering, respectively. Both students are members of Barrett, the Honors College, at Arizona State University, and have prepared the following document for the purpose of completing their undergraduate honors thesis. The early sections of this document comprise a general, introductory overview of earthquakes and liquefaction as a phenomenon resulting from earthquakes. In the latter sections, this document analyzes the relationship between the furthest hypocentral distance to observed liquefaction and the earthquake magnitude published in 2006 by Wang, Wong, Dreger, and Manga. This research was conducted to gain a greater understanding of the factors influencing liquefaction and to compare the existing relationship between the maximum distance for liquefaction and earthquake magnitude to updated earthquake data compiled for the purpose of this report. As part of this research, 38 different earthquake events from the Geotechnical Extreme Events Reconnaissance (GEER) Association with liquefaction data were examined. Information regarding earthquake depth, distance to the furthest liquefaction event (epicentral and hypocentral), and earthquake magnitude (Mw) from recent earthquake events (1989 to 2016) was compared to the previously established relationship of liquefaction occurrence distance to moment magnitude. The purpose of this comparison was to determine if recent events still comply with the established relationship. From this comparison, it was determined that the established relationship still generally holds true for the large magnitude earthquakes (magnitude 7.5 or above) that were considered herein (with only 2.6% falling above the furthest expected liquefaction distance). However, this relationship may be too conservative for recent, low magnitude earthquake events; those events examined below magnitude 6.3 did not approach established range of furthest expected liquefaction distance. The overestimation of furthest hypocentral distance to liquefaction at low magnitudes suggest the empirical relationship may need to be adjusted to more accurately capture recent events, as reported by GEER.
ContributorsMonroe, Hayley (Co-author) / Maynard, Tyler (Co-author) / Kavazanjian, Edward (Thesis director) / Houston, Sandra (Committee member) / Civil, Environmental and Sustainable Engineering Program (Contributor) / Construction Engineering (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
154192-Thumbnail Image.png
Description
Up to 25 percent of the operating budget for contaminated site restoration projects is spent on site characterization, including long-term monitoring of contaminant concentrations. The sensitivity, selectivity, and reproducibility of analytical methods have improved to the point where sampling techniques bear the primary responsibility for the accuracy and precision of

Up to 25 percent of the operating budget for contaminated site restoration projects is spent on site characterization, including long-term monitoring of contaminant concentrations. The sensitivity, selectivity, and reproducibility of analytical methods have improved to the point where sampling techniques bear the primary responsibility for the accuracy and precision of the data. Most samples represent discrete concentrations in time and space; with sampling points frequently limited in both dimensions, sparse data sets are heavily extrapolated and the quality of data further limited.

Methods are presented for characterizing contaminants in water (groundwater and surface waters) and indoor air. These techniques are integrative, providing information averaged over time and/or space, as opposed to instantaneous point measurements. Contaminants are concentrated from the environment, making these methods applicable to trace contaminants. These methods have the potential to complement existing techniques, providing the practitioner with opportunities to reduce costs and improve the quality of the data used in decision making.

A conceptual model for integrative sampling of environmental waters is developed and a literature review establishes an advantage in precision for active samplers. A programmable sampler was employed to measure the concentration of chromate in a shallow aquifer exhibiting time-dependent contaminant concentrations, providing a unique data set and sustainability benefits. The analysis of heat exchanger condensate, a waste stream generated by air conditioning, is demonstrated in a non-intrusive method for indoor air quality assessment. In sum, these studies present new opportunities for effective, sustainable environmental characterization.
ContributorsRoll, Isaac B (Author) / Halden, Rolf U. (Thesis advisor) / Johnson, Paul C (Committee member) / Kavazanjian, Edward (Committee member) / Arizona State University (Publisher)
Created2015
154635-Thumbnail Image.png
Description
The dissimilatory reduction of nitrate, or denitrification, offers the potential of a sustainable, cost effective method for the non-disruptive mitigation of earthquake-induced soil liquefaction. Worldwide, trillions of dollars of infrastructure are at risk for liquefaction damage in earthquake prone regions. However, most techniques for remediating liquefiable soils are

The dissimilatory reduction of nitrate, or denitrification, offers the potential of a sustainable, cost effective method for the non-disruptive mitigation of earthquake-induced soil liquefaction. Worldwide, trillions of dollars of infrastructure are at risk for liquefaction damage in earthquake prone regions. However, most techniques for remediating liquefiable soils are either not applicable to sites near existing infrastructure, or are prohibitively expensive. Recently, laboratory studies have shown the potential for biogeotechnical soil improvement techniques such as microbially induced carbonate precipitation (MICP) to mitigate liquefaction potential in a non-disruptive manner. Multiple microbial processes have been identified for MICP, but only two have been extensively studied. Ureolysis, the most commonly studied process for MICP, has been shown to quickly and efficiently induce carbonate precipitation on particle surfaces and at particle contacts to improve the stiffness, strength, and dilatant behavior of liquefiable soils. However, ureolysis also produces copious amounts of ammonium, a potentially toxic byproduct. The second process studied for MICP, denitrification, has been shown to precipitate carbonate, and hence improve soil properties, much more slowly than ureolysis. However, the byproducts of denitrification, nitrogen and carbon dioxide gas, are non-toxic, and present the added benefit of rapidly desaturating the treated soil. Small amounts of desaturation have been shown to increase the cyclic resistance, and hence the liquefaction resistance, of liquefiable soils. So, denitrification offers the potential to mitigate liquefaction as a two-stage process, with desaturation providing short term mitigation, and MICP providing long term liquefaction resistance. This study presents the results of soil testing, stoichiometric modeling, and microbial ecology characterization to better characterize the potential use of denitrification as a two-stage process for liquefaction mitigation.
ContributorsO'Donnell, Sean (Author) / Kavazanjian, Edward (Thesis advisor) / Rittmann, Bruce (Committee member) / Houston, Sandra (Committee member) / Arizona State University (Publisher)
Created2016
154863-Thumbnail Image.png
Description
The understanding of multiphase fluid flow in porous media is of great importance in many fields such as enhanced oil recovery, hydrology, CO2 sequestration, contaminants cleanup, and natural gas production from hydrate bearing sediments.

In this study, first, the water retention curve (WRC) and relative permeability in hydrate bearing sediments

The understanding of multiphase fluid flow in porous media is of great importance in many fields such as enhanced oil recovery, hydrology, CO2 sequestration, contaminants cleanup, and natural gas production from hydrate bearing sediments.

In this study, first, the water retention curve (WRC) and relative permeability in hydrate bearing sediments are explored to obtain fitting parameters for semi-empirical equations. Second, immiscible fluid invasion into porous media is investigated to identify fluid displacement pattern and displacement efficiency that are affected by pore size distribution and connectivity. Finally, fluid flow through granular media is studied to obtain fluid-particle interaction. This study utilizes the combined techniques of discrete element method simulation, micro-focus X-ray computed tomography (CT), pore-network model simulation algorithms for gas invasion, gas expansion, and relative permeability calculation, transparent micromodels, and water retention curve measurement equipment modified for hydrate-bearing sediments. In addition, a photoelastic disk set-up is fabricated and the image processing technique to correlate the force chain to the applied contact forces is developed.

The results show that the gas entry pressure and the capillary pressure increase with increasing hydrate saturation. Fitting parameters are suggested for different hydrate saturation conditions and morphologies. And, a new model for immiscible fluid invasion and displacement is suggested in which the boundaries of displacement patterns depend on the pore size distribution and connectivity. Finally, the fluid-particle interaction study shows that the fluid flow increases the contact forces between photoelastic disks in parallel direction with the fluid flow.
ContributorsMahabadi, Nariman (Author) / Jang, Jaewon (Thesis advisor) / Zapata, Claudia (Committee member) / Kavazanjian, Edward (Committee member) / Arizona State University (Publisher)
Created2016
155082-Thumbnail Image.png
Description
Nanotechnology has been applied to many areas such as medicine, manufacturing, catalysis, food, cosmetics, and energy since the beginning 21st century. However, the application of nanotechnology to geotechnical engineering has not received much attention. This research explored the technical benefits and the feasibility of applying nanoparticles in geotechnical engineering. Specific

Nanotechnology has been applied to many areas such as medicine, manufacturing, catalysis, food, cosmetics, and energy since the beginning 21st century. However, the application of nanotechnology to geotechnical engineering has not received much attention. This research explored the technical benefits and the feasibility of applying nanoparticles in geotechnical engineering. Specific studies were conducted by utilizing high-pressure devices, axisymmetric drop shape analysis (ADSA), microfluidics, time-lapse technology, Atomic Force Microscopy (AFM) to develop experiments. The effects of nanoparticle on modifying interfacial tension, wettability, viscosity, sweep efficiency and surface attraction forces were investigated. The results show that nanoparticles mixed in water can significantly reduce the interfacial tension of water in CO2 in the applications of nanofluid-CO2 flow in sediments; nanoparticle stabilized foam can be applied to isolate contaminants from clean soils in groundwater/soil remediation, as well as in CO2 geological sequestration or enhanced oil/gas recovery to dramatically improve the sweep efficiency; nanoparticle coatings are capable to increase the surface adhesion force so as to capture migrating fine particles to help prevent clogging near wellbore or in granular filter in the applications of oil and gas recovery, geological CO2 sequestration, geothermal recovery, contaminant transport, groundwater flow, and stormwater management system.
ContributorsZheng, Xianglei (Author) / Jang, Jaewon (Thesis advisor) / Zapata, Claudia (Committee member) / Kavazanjian, Edward (Committee member) / Arizona State University (Publisher)
Created2016
154960-Thumbnail Image.png
Description
A series of experiments were conducted to support validation of a numerical model for the performance of geomembrane liners subject to waste settlement and seismic loading. These experiments included large scale centrifuge model testing of a geomembrane-lined landfill, small scale laboratory testing to get the relevant properties of the materials

A series of experiments were conducted to support validation of a numerical model for the performance of geomembrane liners subject to waste settlement and seismic loading. These experiments included large scale centrifuge model testing of a geomembrane-lined landfill, small scale laboratory testing to get the relevant properties of the materials used in the large scale centrifuge model, and tensile tests on seamed geomembrane coupons. The landfill model in the large scale centrifuge test was built with a cemented sand base, a thin film NafionTM geomembrane liner, and a mixture of sand and peat for model waste. The centrifuge model was spun up to 60 g, allowed to settle, and then subjected to seismic loading at three different peak ground accelerations (PGA). Strain on the liner and settlement of the waste during model spin-up and subsequent seismic loading and accelerations throughout the model due to seismic loading were acquired from sensors within the model. Laboratory testing conducted to evaluate the properties of the materials used in the model included triaxial compression tests on the cemented sand base, wide-width tensile testing of the thin film geomembrane, interface shear testing between the thin film geomembrane and the waste material, and one dimensional compression and cyclic direct simple shear testing of the sand-peat mixture used to simulate the waste. The tensile tests on seamed high-density polyethylene (HDPE) coupons were conducted to evaluate strain concentration associated with seams oriented perpendicular to an applied tensile load. Digital image correlation (DIC) was employed to evaluate the strain field, and hence seam strain concentrations, in these tensile tests. One-dimensional compression tests were also conducted on composite sand and HDPE samples to evaluate the compressive modulus of HDPE. The large scale centrifuge model and small scale laboratory tests provide the necessary data for numerical model validation. The tensile tests on seamed HDPE specimens show that maximum tensile strain due to strain concentrations at a seam is greater than previously suggested, a finding with profound implications for landfill liner design and construction quality control/quality assurance (QC/QA) practices. The results of the one-dimensional compression tests on composite sand-HDPE specimens were inconclusive.
ContributorsGutierrez, Angel (Author) / Kavazanjian, Edward (Thesis advisor) / Zapata, Claudia (Committee member) / Jang, Jaewon (Committee member) / Arizona State University (Publisher)
Created2016
155788-Thumbnail Image.png
Description
This dissertation presents an investigation of calcium carbonate precipitation via hydrolysis of urea (ureolysis) catalyzed by plant-extracted urease enzyme for soil improvement. In this approach to soil improvement, referred to as enzyme induced carbonate precipitation (EICP), carbonate minerals are precipitated within the soil pores, cementing soil particles together and increasing

This dissertation presents an investigation of calcium carbonate precipitation via hydrolysis of urea (ureolysis) catalyzed by plant-extracted urease enzyme for soil improvement. In this approach to soil improvement, referred to as enzyme induced carbonate precipitation (EICP), carbonate minerals are precipitated within the soil pores, cementing soil particles together and increasing the dilatancy of the soil. EICP is a bio-inspired solution to improving the properties of cohesionless soil in that no living organisms are engaged in the process, though it uses a biologically-derived material (urease enzyme).

Over the past decade, research has commenced on biologically-mediated solutions like microbially induced carbonate precipitation (MICP) and biologically-inspired solutions like EICP for non-disruptive ground improvement. Both of these approaches rely upon hydrolysis of urea catalyzed by the enzyme urease. Under the right environmental conditions (e.g., pH), the hydrolysis of urea leads to calcium carbonate precipitation in the presence of Ca^(2+). The rate of carbonate precipitation via hydrolysis of urea can be up to 〖10〗^14 times faster than natural process.

The objective of this research was to ascertain the effectiveness of EICP for soil improvement via hydrolysis of urea (ureolysis) catalyzed by plant-extracted urease enzyme. Elements of this work include: 1) systematic experiments to identify an optimum EICP treatment solution; 2) evaluation of the mechanical properties of EICP-treated soil under different treatment conditions and with varying carbonate contents; 3) investigation of the potential for enhancing the EICP stabilization process by including xanthan gum, natural sisal fiber, and powdered of dried non-fat milk in the EICP treatment solution; and 4) bench-scale studies of the use of EICP to make sub-horizontal columns of cemented soil for soil nailing and vertical columns of cemented soil for foundation support. As part of this research, the effect of three preparation methods (mix-and-compact, percolation, and injection) was also examined as was the influence of the grain size of soil. The results of this study should help make the EICP technique an attractive option for geotechnical engineers for ground improvement and stimulate the development and use of other biogeotechnical techniques for civil engineering purposes.
ContributorsAlmajed, Abdullah A. (Author) / Kavazanjian, Edward (Thesis advisor) / Zapata, Claudia (Committee member) / Hamdan, Nasser M (Committee member) / Arizona State University (Publisher)
Created2017
155853-Thumbnail Image.png
Description
Recent research efforts have been directed to improve the quality of pavement design procedures by considering the transient nature of soil properties due to environmental and aging effects on pavement performance. The main purpose of this research study was to investigate the existence of subgrade soil moisture changes that may

Recent research efforts have been directed to improve the quality of pavement design procedures by considering the transient nature of soil properties due to environmental and aging effects on pavement performance. The main purpose of this research study was to investigate the existence of subgrade soil moisture changes that may have arisen due to thermal and hydraulic gradients at the Atlantic City NAPTF and to evaluate their effect on the material stiffness and the California Bearing Ratio (CBR) strength parameter of the clay subgrade materials. Laboratory data showed that at the same water content, matric suction decreases with increasing temperature; and at the same suction, hydraulic conductivity increases with increasing temperature. Models developed, together with moisture/temperature data collected from 30 sensors installed in the test facility, yielded a maximum variation of suction in field of 155 psi and changes in hydraulic conductivity from 2.9E-9 m/s at 100% saturation to 8.1E-12 at 93% saturation. The maximum variation in temperature was found to be 20.8oC at the shallower depth and decreased with depth; while a maximum variation in moisture content was found to be 3.7% for Dupont clay and 4.4% for County clay. Models developed that predicts CBR as a function of dry density and moisture content yielded a maximum variation of CBR of 2.4 for Dupont clay and 2.9 for County clay. Additionally, models were developed relating the temperature with the bulk stress and octahedral stress applied on the subgrade for dual gear, dual tandem and triple tandem gear types for different tire loads. It was found that as the temperature increases the stresses increase. A Modified Cary and Zapata model was used for predicting the resilient modulus(Mr) of the subgrade. Using the models developed and the temperature/moisture changes observed in the field, the variation of suction, bulk and octahedral stresses were estimated, along with the resilient modulus for three different gear types. Results indicated that changes in Mr as large as 9 ksi occur in the soils studied due to the combined effect of external loads and environmental condition changes.
ContributorsThirthar Palanivelu, Pugazhvel (Author) / Zapata, Claudia E (Thesis advisor) / Kavazanjian, Edward (Committee member) / Houston, Sandra (Committee member) / Underwood, Shane (Committee member) / Arizona State University (Publisher)
Created2017
155418-Thumbnail Image.png
Description
A numerical model for design of the geomembrane elements of waste containment systems has been validated by laboratory testing. Due to the absence of any instrumented case histories of seismic performance of geomembrane liner systems, a large scale centrifuge test of a model geomembrane-lined landfill subject to seismic loading was

A numerical model for design of the geomembrane elements of waste containment systems has been validated by laboratory testing. Due to the absence of any instrumented case histories of seismic performance of geomembrane liner systems, a large scale centrifuge test of a model geomembrane-lined landfill subject to seismic loading was conducted at the University of California at Davis Centrifuge Test facility as part of National Science Foundation Network for Earthquake the Engineering Simulation Research (NEESR) program. Data collected in the large scale centrifuge test included waste settlement, liner strains and earthquake accelerations at various locations throughout the model. This data on landfill and liner seismic performance has been supplemented with additional laboratory and small scale centrifuge tests to determine the parameters required for the numerical model, including strength and stiffness of the model materials, interface shear strengths, and interface stiffness. The numerical model explicitly assesses the forces and strains in the geomembrane elements of a containment system to subject to both static and seismic loads the computer code FLACTM, a finite difference program for non-linear analysis of continua. The model employs a beam element with zero moment of inertia and with interface elements on both sides to model to represent the geomembrane elements in the liner system. The model also includes non-linear constitutive models for the stress-strain behavior of geomembrane beam elements and an elastic-perfectly plastic model for the load-displacement behavior of the beam interfaces. Parametric studies are conducted with the validated numerical model to develop recommendations for landfill design, construction, and construction quality assurance.
ContributorsWu, Xuan (Ph.D. in civil and environmental engineering) (Author) / Kavazanjian, Edward (Thesis advisor) / Zapata, Claudia (Committee member) / Jang, Jaewon (Committee member) / Arizona State University (Publisher)
Created2017
155622-Thumbnail Image.png
Description
Laboratory testing was conducted to quantify strain concentrations adjacent to seams and scratches in high density polyethylene (HDPE) geomembranes. The tensile strain profile of remnants meeting the ASTM criteria for wide-width tensile testing from samples of field seams recovered for construction quality assurance testing was evaluated using digital image correlation

Laboratory testing was conducted to quantify strain concentrations adjacent to seams and scratches in high density polyethylene (HDPE) geomembranes. The tensile strain profile of remnants meeting the ASTM criteria for wide-width tensile testing from samples of field seams recovered for construction quality assurance testing was evaluated using digital image correlation (DIC). Strains adjacent to scratches on laboratory prepared samples loaded in tension were also measured using DIC. The tensile strain in the zone adjacent to a seam and the tensile strain adjacent to a scratch were compared to the tensile strains calculated using theoretical strain concentration factors. The relationship between the maximum tensile strain adjacent to a seam and the global nominal strain in the sample was quantified for textured and smooth geomembranes of common thicknesses. Using statistical analysis of the data, bounds were developed for the allowable nominal tensile strain expected to induce maximum tensile strains adjacent to the seam less than or equal to the typical yield strain of HDPE geomembranes, at several confidence levels. Where nominal strain is the global or average strain applied to the sample and maximum strain is the largest tensile strain induced in the sample.

The reduction in the nominal yield strain due to a scratch in a HDPE geomembrane was also quantified. The yield strain was approximately the same as predicted using theoretical strain concentration factors. The difference in the average measured maximum strains adjacent to the seams of textured and smooth HDPE geomembranes was found to be statistically insignificant. However, maximum strains adjacent to extrusion welded seams were somewhat greater than adjacent to fusion welded seams for nominal strains on the order of 3% to 4%. The results of the testing program suggest that the nominal tensile strain should be limited to 4% around dual hot wedge seams and 3% around extrusion fillet seams to avoid maximum strains equal to 11%, a typical yield strain for HDPE geomembranes.
ContributorsAndresen, Jake (Author) / Kavazanjian, Edward (Thesis advisor) / Houston, Sandra (Committee member) / Zapata, Claudia (Committee member) / Arizona State University (Publisher)
Created2017