Matching Items (998)
152019-Thumbnail Image.png
Description
In this thesis, we present the study of several physical properties of relativistic mat- ters under extreme conditions. We start by deriving the rate of the nonleptonic weak processes and the bulk viscosity in several spin-one color superconducting phases of quark matter. We also calculate the bulk viscosity in the

In this thesis, we present the study of several physical properties of relativistic mat- ters under extreme conditions. We start by deriving the rate of the nonleptonic weak processes and the bulk viscosity in several spin-one color superconducting phases of quark matter. We also calculate the bulk viscosity in the nonlinear and anharmonic regime in the normal phase of strange quark matter. We point out several qualitative effects due to the anharmonicity, although quantitatively they appear to be relatively small. In the corresponding study, we take into account the interplay between the non- leptonic and semileptonic weak processes. The results can be important in order to relate accessible observables of compact stars to their internal composition. We also use quantum field theoretical methods to study the transport properties in monolayer graphene in a strong magnetic field. The corresponding quasi-relativistic system re- veals an anomalous quantum Hall effect, whose features are directly connected with the spontaneous flavor symmetry breaking. We study the microscopic origin of Fara- day rotation and magneto-optical transmission in graphene and show that their main features are in agreement with the experimental data.
ContributorsWang, Xinyang, Ph.D (Author) / Shovkovy, Igor (Thesis advisor) / Belitsky, Andrei (Committee member) / Easson, Damien (Committee member) / Peng, Xihong (Committee member) / Vachaspati, Tanmay (Committee member) / Arizona State University (Publisher)
Created2013
152066-Thumbnail Image.png
Description
Sustainable urbanism offers a set of best practice planning and design prescriptions intended to reverse the negative environmental consequences of urban sprawl, which dominates new urban development in the United States. Master planned developments implementing sustainable urbanism are proliferating globally, garnering accolades within the planning community and skepticism among social

Sustainable urbanism offers a set of best practice planning and design prescriptions intended to reverse the negative environmental consequences of urban sprawl, which dominates new urban development in the United States. Master planned developments implementing sustainable urbanism are proliferating globally, garnering accolades within the planning community and skepticism among social scientists. Despite attention from supporters and critics alike, little is known about the actual environmental performance of sustainable urbanism. This dissertation addresses the reasons for this paucity of evidence and the capacity of sustainable urbanism to deliver the espoused environmental outcomes through alternative urban design and the conventional master planning framework for development through three manuscripts. The first manuscript considers the reasons why geography, which would appear to be a natural empirical home for research on sustainable urbanism, has yet to accumulate evidence that links design alternatives to environmental outcomes or to explain the social processes that mediate those outcomes. It argues that geography has failed to develop a coherent subfield based on nature-city interactions and suggests interdisciplinary bridging concepts to invigorate greater interaction between the urban and nature-society geographic subfields. The subsequent chapters deploy these bridging concepts to empirically examine case-studies in sustainable urbanism. The second manuscript utilizes fine scale spatial data to quantify differences in ecosystem services delivery across three urban designs in two phases of Civano, a sustainable urbanism planned development in Tucson, Arizona, and an adjacent, typical suburban development comparison community. The third manuscript considers the extent to which conventional master planning processes are fundamentally at odds with urban environmental sustainability through interviews with stakeholders involved in three planned developments: Civano (Tucson, Arizona), Mueller (Austin, Texas), and Prairie Crossing (Grayslake, Illinois). Findings from the three manuscripts reveal deep challenges in conceptualizing an empirical area of inquiry on sustainable urbanism, measuring the outcomes of urban design alternatives, and innovating planning practice within the constraints of existing institutions that facilitate conventional development. Despite these challenges, synthesizing the insights of geography and cognate fields holds promise in building an empirical body of knowledge that complements pioneering efforts of planners to innovate urban planning practice through the sustainable urbanism alternative.
ContributorsTurner, Victoria (Author) / Gober, Patricia (Thesis advisor) / Eakin, Hallie (Committee member) / Kinzig, Ann (Committee member) / Talen, Emily (Committee member) / Arizona State University (Publisher)
Created2013
151549-Thumbnail Image.png
Description
Decision makers contend with uncertainty when working through complex decision problems. Yet uncertainty visualization, and tools for working with uncertainty in GIS, are not widely used or requested in decision support. This dissertation suggests a disjoint exists between practice and research that stems from differences in how visualization researchers conceptualize

Decision makers contend with uncertainty when working through complex decision problems. Yet uncertainty visualization, and tools for working with uncertainty in GIS, are not widely used or requested in decision support. This dissertation suggests a disjoint exists between practice and research that stems from differences in how visualization researchers conceptualize uncertainty and how decision makers frame uncertainty. To bridge this gap between practice and research, this dissertation explores uncertainty visualization as a means for reframing uncertainty in geographic information systems for use in policy decision support through three connected topics. Initially, this research explores visualizing the relationship between uncertainty and policy outcomes as a means for incorporating policymakers' decision frames when visualizing uncertainty. Outcome spaces are presented as a method to represent the effect of uncertainty on policy outcomes. This method of uncertainty visualization acts as an uncertainty map, representing all possible outcomes for specific policy decisions. This conceptual model incorporates two variables, but implicit uncertainty can be extended to multivariate representations. Subsequently, this work presented a new conceptualization of uncertainty, termed explicit and implicit, that integrates decision makers' framing of uncertainty into uncertainty visualization. Explicit uncertainty is seen as being separate from the policy outcomes, being described or displayed separately from the underlying data. In contrast, implicit uncertainty links uncertainty to decision outcomes, and while understood, it is not displayed separately from the data. The distinction between explicit and implicit is illustrated through several examples of uncertainty visualization founded in decision science theory. Lastly, the final topic assesses outcome spaces for communicating uncertainty though a human subject study. This study evaluates the effectiveness of the implicit uncertainty visualization method for communicating uncertainty for policy decision support. The results suggest that implicit uncertainty visualization successfully communicates uncertainty in results, even though uncertainty is not explicitly shown. Participants also found the implicit visualization effective for evaluating policy outcomes. Interestingly, participants also found the explicit uncertainty visualization to be effective for evaluating the policy outcomes, results that conflict with prior research.
ContributorsDeitrick, Stephanie (Author) / Wentz, Elizabeth (Thesis advisor) / Goodchild, Michael (Committee member) / Edsall, Robert (Committee member) / Gober, Patricia (Committee member) / Arizona State University (Publisher)
Created2013
152299-Thumbnail Image.png
Description
Extreme hot-weather events have become life-threatening natural phenomena in many cities around the world, and the health impacts of excessive heat are expected to increase with climate change (Huang et al. 2011; Knowlton et al. 2007; Meehl and Tebaldi 2004; Patz 2005). Heat waves will likely have the worst health

Extreme hot-weather events have become life-threatening natural phenomena in many cities around the world, and the health impacts of excessive heat are expected to increase with climate change (Huang et al. 2011; Knowlton et al. 2007; Meehl and Tebaldi 2004; Patz 2005). Heat waves will likely have the worst health impacts in urban areas, where large numbers of vulnerable people reside and where local-scale urban heat island effects (UHI) retard and reduce nighttime cooling. This dissertation presents three empirical case studies that were conducted to advance our understanding of human vulnerability to heat in coupled human-natural systems. Using vulnerability theory as a framework, I analyzed how various social and environmental components of a system interact to exacerbate or mitigate heat impacts on human health, with the goal of contributing to the conceptualization of human vulnerability to heat. The studies: 1) compared the relationship between temperature and health outcomes in Chicago and Phoenix; 2) compared a map derived from a theoretical generic index of vulnerability to heat with a map derived from actual heat-related hospitalizations in Phoenix; and 3) used geospatial information on health data at two areal units to identify the hot spots for two heat health outcomes in Phoenix. The results show a 10-degree Celsius difference in the threshold temperatures at which heat-stress calls in Phoenix and Chicago are likely to increase drastically, and that Chicago is likely to be more sensitive to climate change than Phoenix. I also found that heat-vulnerability indices are sensitive to scale, measurement, and context, and that cities will need to incorporate place-based factors to increase the usefulness of vulnerability indices and mapping to decision making. Finally, I found that identification of geographical hot-spot of heat-related illness depends on the type of data used, scale of measurement, and normalization procedures. I recommend using multiple datasets and different approaches to spatial analysis to overcome this limitation and help decision makers develop effective intervention strategies.
ContributorsChuang, Wen-Ching (Author) / Gober, Patricia (Thesis advisor) / Boone, Christopher (Committee member) / Guhathakurta, Subhrajit (Committee member) / Ruddell, Darren (Committee member) / Arizona State University (Publisher)
Created2013
150890-Thumbnail Image.png
Description
Numerical simulations are very helpful in understanding the physics of the formation of structure and galaxies. However, it is sometimes difficult to interpret model data with respect to observations, partly due to the difficulties and background noise inherent to observation. The goal, here, is to attempt to bridge this ga

Numerical simulations are very helpful in understanding the physics of the formation of structure and galaxies. However, it is sometimes difficult to interpret model data with respect to observations, partly due to the difficulties and background noise inherent to observation. The goal, here, is to attempt to bridge this gap between simulation and observation by rendering the model output in image format which is then processed by tools commonly used in observational astronomy. Images are synthesized in various filters by folding the output of cosmological simulations of gasdynamics with star-formation and dark matter with the Bruzual- Charlot stellar population synthesis models. A variation of the Virgo-Gadget numerical simulation code is used with the hybrid gas and stellar formation models of Springel and Hernquist (2003). Outputs taken at various redshifts are stacked to create a synthetic view of the simulated star clusters. Source Extractor (SExtractor) is used to find groupings of stellar populations which are considered as galaxies or galaxy building blocks and photometry used to estimate the rest frame luminosities and distribution functions. With further refinements, this is expected to provide support for missions such as JWST, as well as to probe what additional physics are needed to model the data. The results show good agreement in many respects with observed properties of the galaxy luminosity function (LF) over a wide range of high redshifts. In particular, the slope (alpha) when fitted to the standard Schechter function shows excellent agreement both in value and evolution with redshift, when compared with observation. Discrepancies of other properties with observation are seen to be a result of limitations of the simulation and additional feedback mechanisms which are needed.
ContributorsMorgan, Robert (Author) / Windhorst, Rogier A (Thesis advisor) / Scannapieco, Evan (Committee member) / Rhoads, James (Committee member) / Gardner, Carl (Committee member) / Belitsky, Andrei (Committee member) / Arizona State University (Publisher)
Created2012
150947-Thumbnail Image.png
Description
Understanding the temperature structure of protoplanetary disks (PPDs) is paramount to modeling disk evolution and future planet formation. PPDs around T Tauri stars have two primary heating sources, protostellar irradiation, which depends on the flaring of the disk, and accretional heating as viscous coupling between annuli dissipate energy. I have

Understanding the temperature structure of protoplanetary disks (PPDs) is paramount to modeling disk evolution and future planet formation. PPDs around T Tauri stars have two primary heating sources, protostellar irradiation, which depends on the flaring of the disk, and accretional heating as viscous coupling between annuli dissipate energy. I have written a "1.5-D" radiative transfer code to calculate disk temperatures assuming hydrostatic and radiative equilibrium. The model solves for the temperature at all locations simultaneously using Rybicki's method, converges rapidly at high optical depth, and retains full frequency dependence. The likely cause of accretional heating in PPDs is the magnetorotational instability (MRI), which acts where gas ionization is sufficiently high for gas to couple to the magnetic field. This will occur in surface layers of the disk, leaving the interior portions of the disk inactive ("dead zone"). I calculate temperatures in PPDs undergoing such "layered accretion." Since the accretional heating is concentrated far from the midplane, temperatures in the disk's interior are lower than in PPDs modeled with vertically uniform accretion. The method is used to study for the first time disks evolving via the magnetorotational instability, which operates primarily in surface layers. I find that temperatures in layered accretion disks do not significantly differ from those of "passive disks," where no accretional heating exists. Emergent spectra are insensitive to active layer thickness, making it difficult to observationally identify disks undergoing layered vs. uniform accretion. I also calculate the ionization chemistry in PPDs, using an ionization network including multiple charge states of dust grains. Combined with a criterion for the onset of the MRI, I calculate where the MRI can be initiated and the extent of dead zones in PPDs. After accounting for feedback between temperature and active layer thickness, I find the surface density of the actively accreting layers falls rapidly with distance from the protostar, leading to a net outward flow of mass from ~0.1 to 3 AU. The clearing out of the innermost zones is possibly consistent with the observed behavior of recently discovered "transition disks."
ContributorsLesniak, Michael V., III (Author) / Desch, Steven J. (Thesis advisor) / Scannapieco, Evan (Committee member) / Timmes, Francis (Committee member) / Starrfield, Sumner (Committee member) / Belitsky, Andrei (Committee member) / Arizona State University (Publisher)
Created2012
150778-Thumbnail Image.png
Description
This thesis deals with the first measurements done with a cold neutron beam at the Spallation Neutron Source at Oak Ridge National Laboratory. The experimental technique consisted of capturing polarized cold neutrons by nuclei to measure parity-violation in the angular distribution of the gamma rays following neutron capture. The measurements

This thesis deals with the first measurements done with a cold neutron beam at the Spallation Neutron Source at Oak Ridge National Laboratory. The experimental technique consisted of capturing polarized cold neutrons by nuclei to measure parity-violation in the angular distribution of the gamma rays following neutron capture. The measurements presented here for the nuclei Chlorine ( 35Cl) and Aluminum ( 27Al ) are part of a program with the ultimate goal of measuring the asymmetry in the angular distribution of gamma rays emitted in the capture of neutrons on protons, with a precision better than 10-8, in order to extract the weak hadronic coupling constant due to pion exchange interaction with isospin change equal with one ( hπ 1). Based on theoretical calculations asymmetry in the angular distribution of the gamma rays from neutron capture on protons has an estimated size of 5·10-8. This implies that the Al parity violation asymmetry and its uncertainty have to be known with a precision smaller than 4·10-8. The proton target is liquid Hydrogen (H2) contained in an Aluminum vessel. Results are presented for parity violation and parity-conserving asymmetries in Chlorine and Aluminum. The systematic and statistical uncertainties in the calculation of the parity-violating and parity-conserving asymmetries are discussed.
ContributorsBalascuta, Septimiu (Author) / Alarcon, Ricardo (Thesis advisor) / Belitsky, Andrei (Committee member) / Doak, Bruce (Committee member) / Comfort, Joseph (Committee member) / Schmidt, Kevin (Committee member) / Arizona State University (Publisher)
Created2012
133588-Thumbnail Image.png
Description
With the new independence of adulthood, college students are a group susceptible to adopting unsupported, if not harmful, health practices. A survey of Arizona State University undergraduate students (N=200) was conducted to evaluate supplement use, trust in information sources, and beliefs about supplement regulation. Of those who reported using supplements,

With the new independence of adulthood, college students are a group susceptible to adopting unsupported, if not harmful, health practices. A survey of Arizona State University undergraduate students (N=200) was conducted to evaluate supplement use, trust in information sources, and beliefs about supplement regulation. Of those who reported using supplements, college students most frequently received information from friends and family. STEM majors in fields unrelated to health who were taking a supplement were found to be less likely to receive information about the supplement from a medical practitioner than those in health fields or those in non-STEM majors (-26.9%, p=0.018). STEM majors in health-related fields were 15.0% more likely to treat colds and/or cold symptoms with research-supported methods identified from reliable sources, while non-health STEM and non-STEM majors were more likely to take unsupported cold treatments (p=0.010). Surveyed students, regardless of major, also stated they would trust a medical practitioner for supplement advice above other sources (88.0%), and the majority expressed a belief that dietary supplements are approved/regulated by the government (59.8%).
ContributorsPerez, Jacob Tanner (Author) / Hendrickson, Kirstin (Thesis director) / Lefler, Scott (Committee member) / College of Liberal Arts and Sciences (Contributor) / School of Molecular Sciences (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137433-Thumbnail Image.png
ContributorsChandler, N. Kayla (Author) / Neisewander, Janet (Thesis director) / Sanabria, Federico (Committee member) / Olive, M. Foster (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2013-05
137434-Thumbnail Image.png
Description
I propose that norms regulate behaviors that negatively impact an individual's survival and reproduction. But because monitoring and enforcing of norms can be costly, individuals should be selective about which norms they police and under what circumstances they should do so. Two studies tested this idea by experimentally activating fitness-relevant

I propose that norms regulate behaviors that negatively impact an individual's survival and reproduction. But because monitoring and enforcing of norms can be costly, individuals should be selective about which norms they police and under what circumstances they should do so. Two studies tested this idea by experimentally activating fitness-relevant motives and having participants answer questions about the policing of norms. The first study examined a norm prescribing respect for status and another proscribing sexual coercion. Results from Study 1 failed to support the hypotheses; activating a status-seeking motive did not have the predicted effects on policing of the respect-status norm nor did activating a mating motive have the predicted effects on policing of the respect-status norm or anti-coercion norm. Study 2 examined two new norms, one prescribing that people stay home when sick and the other proscribing people from having sex with another person's partners. Study 2 also manipulated whether self or others were the target of the policing. Study 2 failed to provide support; a disease avoidance motive failed to have effects on policing of the stay home when sick norm. Individuals in a relationship under a mating motive wanted less policing of others for violation of the mate poaching norm than those in a baseline condition, opposite of the predicted effects.
ContributorsSmith, M. Kristopher (Author) / Neuberg, L. Steven (Thesis director) / Presson, Clark (Committee member) / Hruschka, J. Daniel (Committee member) / Barrett, The Honors College (Contributor) / College of Liberal Arts and Sciences (Contributor)
Created2013-05