Matching Items (12)
151375-Thumbnail Image.png
Description
Ethinyl estradiol, (EE) a synthetic, orally bio-available estrogen, is the most commonly prescribed form of estrogen in oral contraceptives (Shively, C., 1998), and is found in at least 30 different contraceptive formulations currently prescribed to women (Curtis et al., 2005). EE is also used in hormone therapies prescribed to menopausal

Ethinyl estradiol, (EE) a synthetic, orally bio-available estrogen, is the most commonly prescribed form of estrogen in oral contraceptives (Shively, C., 1998), and is found in at least 30 different contraceptive formulations currently prescribed to women (Curtis et al., 2005). EE is also used in hormone therapies prescribed to menopausal women, such as FemhrtTM (Simon et al., 2003). Thus, EE is prescribed clinically to women at ages ranging from puberty through reproductive senescence. Here, in two separate studies, the cognitive effects of cyclic or tonic EE administration following ovariectomy (Ovx) were evaluated in young, female rats. Study I assessed the cognitive effects of low and high doses of EE, delivered tonically via a subcutaneous osmotic pump. Study II evaluated the cognitive effects of low, medium, and high doses of EE administered via a daily subcutaneous injection. For these studies, the low and medium doses correspond to the range of doses currently used in clinical formulations, and the high dose corresponds to the range of doses prescribed to a generation of women between 1960 and 1970, when oral contraceptives first became available. For each study, cognition was evaluated with a battery of maze tasks tapping several domains of spatial learning and memory. At the highest dose, EE treatment impaired multiple domains of spatial memory relative to vehicle treatment, regardless of administration method. When given cyclically at the low and medium doses, EE did not impact working memory, but transiently impaired reference memory during the learning phase of testing. Of the doses and regimens tested here, only EE at the highest dose impaired several domains of memory; this was seen for both cyclic and tonic regimens. Cyclic and tonic delivery of low EE, a dose that corresponds to doses used in the clinic today, resulted in transient and null impairments, respectively, on cognition.
ContributorsMennenga, Sarah E (Author) / Bimonte-Nelson, Heather A. (Thesis advisor) / Baxter, Leslie C. (Committee member) / Olive, Michael F. (Committee member) / Arizona State University (Publisher)
Created2012
156174-Thumbnail Image.png
Description
Heart transplantation is the final treatment option for end-stage heart failure. In the United States, 70 pediatric patients die annually on the waitlist while 800 well-functioning organs get discarded. Concern for potential size-mismatch is one source of allograft waste and high waitlist mortality. Clinicians use the donor-recipient body weight (DRBW)

Heart transplantation is the final treatment option for end-stage heart failure. In the United States, 70 pediatric patients die annually on the waitlist while 800 well-functioning organs get discarded. Concern for potential size-mismatch is one source of allograft waste and high waitlist mortality. Clinicians use the donor-recipient body weight (DRBW) ratio, a standalone metric, to evaluate allograft size-match. However, this body weight metric is far removed from cardiac anatomy and neglects an individual’s anatomical variations. This thesis body of work developed a novel virtual heart transplant fit assessment tool and investigated the tool’s clinical utility to help clinicians safely expand patient donor pools.

The tool allowed surgeons to take an allograft reconstruction and fuse it to a patient’s CT or MR medical image for virtual fit assessment. The allograft is either a reconstruction of the donor’s actual heart (from CT or MR images) or an analogue from a health heart library. The analogue allograft geometry is identified from gross donor parameters using a regression model build herein. The need for the regression model is donor images may not exist or they may not become available within the time-window clinicians have to make a provisional acceptance of an offer.

The tool’s assessment suggested > 20% of upper DRBW listings could have been increased at Phoenix Children’s Hospital (PCH). Upper DRBW listings in the UNOS national database was statistically smaller than at PCH (p-values: < 0.001). Delayed sternal closure and surgeon perceived complication variables had an association (p-value: 0.000016) with 9 of the 11 cases that surgeons had perceived fit-related complications had delayed closures (p-value: 0.034809).

A tool to assess allograft size-match has been developed. Findings warrant future preclinical and clinical prospective studies to further assess the tool’s clinical utility.
ContributorsPlasencia, Jonathan (Author) / Frakes, David H (Thesis advisor) / Kodibagkar, Vikram (Thesis advisor) / Sadleir, Rosalind (Committee member) / Kamarianakis, Yiannis (Committee member) / Zangwill, Steven (Committee member) / Pophal, Stephen (Committee member) / Arizona State University (Publisher)
Created2018
135355-Thumbnail Image.png
Description
Glioblastoma multiforme (GBM) is a malignant, aggressive and infiltrative cancer of the central nervous system with a median survival of 14.6 months with standard care. Diagnosis of GBM is made using medical imaging such as magnetic resonance imaging (MRI) or computed tomography (CT). Treatment is informed by medical images and

Glioblastoma multiforme (GBM) is a malignant, aggressive and infiltrative cancer of the central nervous system with a median survival of 14.6 months with standard care. Diagnosis of GBM is made using medical imaging such as magnetic resonance imaging (MRI) or computed tomography (CT). Treatment is informed by medical images and includes chemotherapy, radiation therapy, and surgical removal if the tumor is surgically accessible. Treatment seldom results in a significant increase in longevity, partly due to the lack of precise information regarding tumor size and location. This lack of information arises from the physical limitations of MR and CT imaging coupled with the diffusive nature of glioblastoma tumors. GBM tumor cells can migrate far beyond the visible boundaries of the tumor and will result in a recurring tumor if not killed or removed. Since medical images are the only readily available information about the tumor, we aim to improve mathematical models of tumor growth to better estimate the missing information. Particularly, we investigate the effect of random variation in tumor cell behavior (anisotropy) using stochastic parameterizations of an established proliferation-diffusion model of tumor growth. To evaluate the performance of our mathematical model, we use MR images from an animal model consisting of Murine GL261 tumors implanted in immunocompetent mice, which provides consistency in tumor initiation and location, immune response, genetic variation, and treatment. Compared to non-stochastic simulations, stochastic simulations showed improved volume accuracy when proliferation variability was high, but diffusion variability was found to only marginally affect tumor volume estimates. Neither proliferation nor diffusion variability significantly affected the spatial distribution accuracy of the simulations. While certain cases of stochastic parameterizations improved volume accuracy, they failed to significantly improve simulation accuracy overall. Both the non-stochastic and stochastic simulations failed to achieve over 75% spatial distribution accuracy, suggesting that the underlying structure of the model fails to capture one or more biological processes that affect tumor growth. Two biological features that are candidates for further investigation are angiogenesis and anisotropy resulting from differences between white and gray matter. Time-dependent proliferation and diffusion terms could be introduced to model angiogenesis, and diffusion weighed imaging (DTI) could be used to differentiate between white and gray matter, which might allow for improved estimates brain anisotropy.
ContributorsAnderies, Barrett James (Author) / Kostelich, Eric (Thesis director) / Kuang, Yang (Committee member) / Stepien, Tracy (Committee member) / Harrington Bioengineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
148228-Thumbnail Image.png
Description

2D fetal echocardiography (ECHO) can be used for monitoring heart development in utero. This study’s purpose is to empirically model normal fetal heart growth and function changes during development by ECHO and compare these to fetuses diagnosed with and without cardiomyopathy with diabetic mothers. There are existing mathematical models describing

2D fetal echocardiography (ECHO) can be used for monitoring heart development in utero. This study’s purpose is to empirically model normal fetal heart growth and function changes during development by ECHO and compare these to fetuses diagnosed with and without cardiomyopathy with diabetic mothers. There are existing mathematical models describing fetal heart development but they warrant revalidation and adjustment. 377 normal fetuses with healthy mothers, 98 normal fetuses with diabetic mothers, and 37 fetuses with cardiomyopathy and diabetic mothers had their cardiac structural dimensions, cardiothoracic ratio, valve flow velocities, and heart rates measured by fetal ECHO in a retrospective chart review. Cardiac features were fitted to linear functions, with respect to gestational age, femur length, head circumference, and biparietal diameter and z-scores were created to model normal fetal growth for all parameters. These z-scores were used to assess what metrics had no difference in means between the normal fetuses of both healthy and diabetic mothers but differed from those diagnosed with cardiomyopathy. It was found that functional metrics like mitral and tricuspid E wave and pulmonary velocity could be important predictors for cardiomyopathy when fitted by gestational age, femur length, head circumference, and biparietal diameter. Additionally, aortic and tricuspid annulus diameters when fitted to estimated gestational age showed potential to be predictors for fetal cardiomyopathy. While the metrics overlapped over their full range, combining them together may have the potential for predicting cardiomyopathy in utero. Future directions of this study will explore creating a classifier model that can predict cardiomyopathy using the metrics assessed in this study.

ContributorsMishra, Shambhavi (Co-author) / Numani, Asfia (Co-author) / Sweazea, Karen (Thesis director) / Plasencia, Jonathan (Committee member) / Economics Program in CLAS (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
141463-Thumbnail Image.png
Description

Five immunocompetent C57BL/6-cBrd/cBrd/Cr (albino C57BL/6) mice were injected with GL261-luc2 cells, a cell line sharing characteristics of human glioblastoma multiforme (GBM). The mice were imaged using magnetic resonance (MR) at five separate time points to characterize growth and development of the tumor. After 25 days, the final tumor volumes of

Five immunocompetent C57BL/6-cBrd/cBrd/Cr (albino C57BL/6) mice were injected with GL261-luc2 cells, a cell line sharing characteristics of human glioblastoma multiforme (GBM). The mice were imaged using magnetic resonance (MR) at five separate time points to characterize growth and development of the tumor. After 25 days, the final tumor volumes of the mice varied from 12 mm3 to 62 mm3, even though mice were inoculated from the same tumor cell line under carefully controlled conditions. We generated hypotheses to explore large variances in final tumor size and tested them with our simple reaction-diffusion model in both a 3-dimensional (3D) finite difference method and a 2-dimensional (2D) level set method. The parameters obtained from a best-fit procedure, designed to yield simulated tumors as close as possible to the observed ones, vary by an order of magnitude between the three mice analyzed in detail. These differences may reflect morphological and biological variability in tumor growth, as well as errors in the mathematical model, perhaps from an oversimplification of the tumor dynamics or nonidentifiability of parameters. Our results generate parameters that match other experimental in vitro and in vivo measurements. Additionally, we calculate wave speed, which matches with other rat and human measurements.

ContributorsRutter, Erica (Author) / Stepien, Tracy (Author) / Anderies, Barrett (Author) / Plasencia, Jonathan (Author) / Woolf, Eric C. (Author) / Scheck, Adrienne C. (Author) / Turner, Gregory H. (Author) / Liu, Qingwei (Author) / Frakes, David (Author) / Kodibagkar, Vikram (Author) / Kuang, Yang (Author) / Preul, Mark C. (Author) / Kostelich, Eric (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-05-31
141500-Thumbnail Image.png
Description

We constructed an 11-arm, walk-through, human radial-arm maze (HRAM) as a translational instrument to compare existing methodology in the areas of rodent and human learning and memory research. The HRAM, utilized here, serves as an intermediary test between the classic rat radial-arm maze (RAM) and standard human neuropsychological and cognitive

We constructed an 11-arm, walk-through, human radial-arm maze (HRAM) as a translational instrument to compare existing methodology in the areas of rodent and human learning and memory research. The HRAM, utilized here, serves as an intermediary test between the classic rat radial-arm maze (RAM) and standard human neuropsychological and cognitive tests. We show that the HRAM is a useful instrument to examine working memory ability, explore the relationships between rodent and human memory and cognition models, and evaluate factors that contribute to human navigational ability. One-hundred-and-fifty-seven participants were tested on the HRAM, and scores were compared to performance on a standard cognitive battery focused on episodic memory, working memory capacity, and visuospatial ability. We found that errors on the HRAM increased as working memory demand became elevated, similar to the pattern typically seen in rodents, and that for this task, performance appears similar to Miller's classic description of a processing-inclusive human working memory capacity of 7 ± 2 items. Regression analysis revealed that measures of working memory capacity and visuospatial ability accounted for a large proportion of variance in HRAM scores, while measures of episodic memory and general intelligence did not serve as significant predictors of HRAM performance. We present the HRAM as a novel instrument for measuring navigational behavior in humans, as is traditionally done in basic science studies evaluating rodent learning and memory, thus providing a useful tool to help connect and translate between human and rodent models of cognitive functioning.

ContributorsMennenga, Sarah (Author) / Baxter, Leslie C. (Author) / Grunfeld, Itamar (Author) / Brewer, Gene (Author) / Aiken, Leona (Author) / Engler-Chiurazzi, Elizabeth (Author) / Camp, Bryan (Author) / Acosta, Jazmin (Author) / Braden, B. Blair (Author) / Schaefer, Keley (Author) / Gerson, Julia (Author) / Lavery, Courtney (Author) / Tsang, Candy (Author) / Hewitt, Lauren (Author) / Kingston, Melissa L. (Author) / Koebele, Stephanie (Author) / Patten, Kristopher (Author) / Ball, B. Hunter (Author) / McBeath, Michael (Author) / Bimonte-Nelson, Heather (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-09-09
Description

Collective cell migration plays a substantial role in maintaining the cohesion of epithelial cell layers and in wound healing. A number of mathematical models of this process have been developed, all of which reduce to essentially a reaction-diffusion equation with diffusion and proliferation terms that depend on material assumptions about

Collective cell migration plays a substantial role in maintaining the cohesion of epithelial cell layers and in wound healing. A number of mathematical models of this process have been developed, all of which reduce to essentially a reaction-diffusion equation with diffusion and proliferation terms that depend on material assumptions about the cell layer. In this paper we extend a one-dimensional mathematical model of cell layer migration of Mi et al. [Biophys. J., 93 (2007), pp. 3745–3752] to incorporate stretch-dependent proliferation, and show that this formulation reduces to a generalized Stefan problem for the density of the layer. We solve numerically the resulting partial differential equation system using an adaptive finite difference method and show that the solutions converge to self-similar or traveling wave solutions. We analyze self-similar solutions for cases with no prolifera- tion, and necessary and sufficient conditions for existence and uniqueness of traveling solutions for a wide range of material assumptions about the cell layer.

ContributorsStepien, Tracy (Author) / Swigon, David (Author) / College of Liberal Arts and Sciences (Contributor)
Created2013-11-30
129539-Thumbnail Image.png
Description

The apolipoprotein E (APOE) e4 allele is the most prevalent genetic risk factor for Alzheimer's disease (AD). Hippocampal volumes are generally smaller in AD patients carrying the e4 allele compared to e4 noncarriers. Here we examined the effect of APOE e4 on hippocampal morphometry in a large imaging database—the Alzheimer's

The apolipoprotein E (APOE) e4 allele is the most prevalent genetic risk factor for Alzheimer's disease (AD). Hippocampal volumes are generally smaller in AD patients carrying the e4 allele compared to e4 noncarriers. Here we examined the effect of APOE e4 on hippocampal morphometry in a large imaging database—the Alzheimer's Disease Neuroimaging Initiative (ADNI). We automatically segmented and constructed hippocampal surfaces from the baseline MR images of 725 subjects with known APOE genotype information including 167 with AD, 354 with mild cognitive impairment (MCI), and 204 normal controls. High-order correspondences between hippocampal surfaces were enforced across subjects with a novel inverse consistent surface fluid registration method. Multivariate statistics consisting of multivariate tensor-based morphometry (mTBM) and radial distance were computed for surface deformation analysis. Using Hotelling's T2 test, we found significant morphological deformation in APOE e4 carriers relative to noncarriers in the entire cohort as well as in the nondemented (pooled MCI and control) subjects, affecting the left hippocampus more than the right, and this effect was more pronounced in e4 homozygotes than heterozygotes. Our findings are consistent with previous studies that showed e4 carriers exhibit accelerated hippocampal atrophy; we extend these findings to a novel measure of hippocampal morphometry. Hippocampal morphometry has significant potential as an imaging biomarker of early stage AD.

ContributorsShi, Jie (Author) / Lepore, Natasha (Author) / Gutman, Boris A. (Author) / Thompson, Paul M. (Author) / Baxter, Leslie C. (Author) / Caselli, Richard J. (Author) / Wang, Yalin (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2014-08-01
128426-Thumbnail Image.png
Description

Atypical brainstem modulation of pain might contribute to changes in sensory processing typical of migraine. The study objective was to investigate whether migraine is associated with brainstem structural alterations that correlate with this altered pain processing. MRI T1-weighted images of 55 migraine patients and 58 healthy controls were used to:

Atypical brainstem modulation of pain might contribute to changes in sensory processing typical of migraine. The study objective was to investigate whether migraine is associated with brainstem structural alterations that correlate with this altered pain processing. MRI T1-weighted images of 55 migraine patients and 58 healthy controls were used to: (1) create deformable mesh models of the brainstem that allow for shape analyses; (2) calculate volumes of the midbrain, pons, medulla and the superior cerebellar peduncles; (3) interrogate correlations between regional brainstem volumes, cutaneous heat pain thresholds, and allodynia symptoms. Migraineurs had smaller midbrain volumes (healthy controls = 61.28 mm3, SD = 5.89; migraineurs = 58.80 mm3, SD = 6.64; p = 0.038), and significant (p < 0.05) inward deformations in the ventral midbrain and pons, and outward deformations in the lateral medulla and dorsolateral pons relative to healthy controls. Migraineurs had a negative correlation between ASC-12 allodynia symptom severity with midbrain volume (r = − 0.32; p = 0.019) and a positive correlation between cutaneous heat pain thresholds with medulla (r = 0.337; p = 0.012) and cerebellar peduncle volumes (r = 0.435; p = 0.001). Migraineurs with greater symptoms of allodynia have smaller midbrain volumes and migraineurs with lower heat pain thresholds have smaller medulla and cerebellar peduncles. The brainstem likely plays a role in altered sensory processing in migraine and brainstem structure might reflect severity of allodynia and hypersensitivity to pain in migraine.

ContributorsChong, Catherine D. (Author) / Plasencia, Jonathan (Author) / Frakes, David (Author) / Schwedt, Todd J. (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2016-11-02
128842-Thumbnail Image.png
Description

The apolipoprotein E (APOE) e4 genotype is a powerful risk factor for late-onset Alzheimer’s disease (AD). In the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort, we previously reported significant baseline structural differences in APOE e4 carriers relative to non-carriers, involving the left hippocampus more than the right—a difference more pronounced in

The apolipoprotein E (APOE) e4 genotype is a powerful risk factor for late-onset Alzheimer’s disease (AD). In the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort, we previously reported significant baseline structural differences in APOE e4 carriers relative to non-carriers, involving the left hippocampus more than the right—a difference more pronounced in e4 homozygotes than heterozygotes. We now examine the longitudinal effects of APOE genotype on hippocampal morphometry at 6-, 12- and 24-months, in the ADNI cohort. We employed a new automated surface registration system based on conformal geometry and tensor-based morphometry. Among different hippocampal surfaces, we computed high-order correspondences, using a novel inverse-consistent surface-based fluid registration method and multivariate statistics consisting of multivariate tensor-based morphometry (mTBM) and radial distance. At each time point, using Hotelling’s T2 test, we found significant morphological deformation in APOE e4 carriers relative to non-carriers in the full cohort as well as in the non-demented (pooled MCI and control) subjects at each follow-up interval. In the complete ADNI cohort, we found greater atrophy of the left hippocampus than the right, and this asymmetry was more pronounced in e4 homozygotes than heterozygotes. These findings, combined with our earlier investigations, demonstrate an e4 dose effect on accelerated hippocampal atrophy, and support the enrichment of prevention trial cohorts with e4 carriers.

ContributorsLi, Bolun (Author) / Shi, Jie (Author) / Gutman, Boris A. (Author) / Baxter, Leslie C. (Author) / Thompson, Paul M. (Author) / Caselli, Richard J. (Author) / Wang, Yalin (Author) / Alzheimer's Disease Neuroimaging Initiative (Project) (Contributor)
Created2016-04-11