Matching Items (41)

137847-Thumbnail Image.png

Modeling Brain Tumors: Simulating individual Patient Cases of Glioblastoma Multiforme

Description

Glioblastoma multiforme (GBMs) is the most prevalent brain tumor type and causes approximately 40% of all non-metastic primary tumors in adult patients [1]. GBMs are malignant, grade-4 brain tumors, the

Glioblastoma multiforme (GBMs) is the most prevalent brain tumor type and causes approximately 40% of all non-metastic primary tumors in adult patients [1]. GBMs are malignant, grade-4 brain tumors, the most aggressive classication as established by the World Health Organization and are marked by their low survival rate; the median survival time is only twelve months from initial diagnosis: Patients who live more than three years are considered long-term survivors [2]. GBMs are highly invasive and their diffusive growth pattern makes it impossible to remove the tumors by surgery alone [3]. The purpose of this paper is to use individual patient data to parameterize a model of GBMs that allows for data on tumor growth and development to be captured on a clinically relevant time scale. Such an endeavor is the rst step to a clinically applicable predictions of GBMs. Previous research has yielded models that adequately represent the development of GBMs, but they have not attempted to follow specic patient cases through the entire tumor process. Using the model utilized by Kostelich et al. [4], I will attempt to redress this deciency. In doing so, I will improve upon a family of models that can be used to approximate the time of development and/or structure evolution in GBMs. The eventual goal is to incorporate Magnetic Resonance Imaging (MRI) data into a parameterized model of GBMs in such a way that it can be used clinically to predict tumor growth and behavior. Furthermore, I hope to come to a denitive conclusion as to the accuracy of the Koteslich et al. model throughout the development of GBMs tumors.

Contributors

Agent

Created

Date Created
  • 2012-12

137413-Thumbnail Image.png

Predicting Glioblastoma Growth Using a Poisson Process

Description

In this research we consider stochastic models of Glioblastoma Multiforme brain tumors. We first look at a model by K. Swanson et al., which describes the dynamics as random diffusion

In this research we consider stochastic models of Glioblastoma Multiforme brain tumors. We first look at a model by K. Swanson et al., which describes the dynamics as random diffusion plus deterministic logistic growth. We introduce a stochastic component in the logistic growth in the form of a random growth rate defined by a Poisson process. We show that this stochastic logistic growth model leads to a more accurate evaluation of the tumor growth compared its deterministic counterpart. We also discuss future plans to incorporate individual patient geometry, extend the model to three dimensions and to incorporate effects of different treatments into our model, in collaboration with a local hospital.

Contributors

Created

Date Created
  • 2013-12

135355-Thumbnail Image.png

Stochastic parameterization of the proliferation-diffusion model of brain cancer in a Murine model

Description

Glioblastoma multiforme (GBM) is a malignant, aggressive and infiltrative cancer of the central nervous system with a median survival of 14.6 months with standard care. Diagnosis of GBM is made

Glioblastoma multiforme (GBM) is a malignant, aggressive and infiltrative cancer of the central nervous system with a median survival of 14.6 months with standard care. Diagnosis of GBM is made using medical imaging such as magnetic resonance imaging (MRI) or computed tomography (CT). Treatment is informed by medical images and includes chemotherapy, radiation therapy, and surgical removal if the tumor is surgically accessible. Treatment seldom results in a significant increase in longevity, partly due to the lack of precise information regarding tumor size and location. This lack of information arises from the physical limitations of MR and CT imaging coupled with the diffusive nature of glioblastoma tumors. GBM tumor cells can migrate far beyond the visible boundaries of the tumor and will result in a recurring tumor if not killed or removed. Since medical images are the only readily available information about the tumor, we aim to improve mathematical models of tumor growth to better estimate the missing information. Particularly, we investigate the effect of random variation in tumor cell behavior (anisotropy) using stochastic parameterizations of an established proliferation-diffusion model of tumor growth. To evaluate the performance of our mathematical model, we use MR images from an animal model consisting of Murine GL261 tumors implanted in immunocompetent mice, which provides consistency in tumor initiation and location, immune response, genetic variation, and treatment. Compared to non-stochastic simulations, stochastic simulations showed improved volume accuracy when proliferation variability was high, but diffusion variability was found to only marginally affect tumor volume estimates. Neither proliferation nor diffusion variability significantly affected the spatial distribution accuracy of the simulations. While certain cases of stochastic parameterizations improved volume accuracy, they failed to significantly improve simulation accuracy overall. Both the non-stochastic and stochastic simulations failed to achieve over 75% spatial distribution accuracy, suggesting that the underlying structure of the model fails to capture one or more biological processes that affect tumor growth. Two biological features that are candidates for further investigation are angiogenesis and anisotropy resulting from differences between white and gray matter. Time-dependent proliferation and diffusion terms could be introduced to model angiogenesis, and diffusion weighed imaging (DTI) could be used to differentiate between white and gray matter, which might allow for improved estimates brain anisotropy.

Contributors

Agent

Created

Date Created
  • 2016-05

134943-Thumbnail Image.png

Naïve Bayes Classification for Analyzing Prostate Cancer Treatment Outcomes

Description

Prostate cancer is the second most common kind of cancer in men. Fortunately, it has a 99% survival rate. To achieve such a survival rate, a variety of aggressive therapies

Prostate cancer is the second most common kind of cancer in men. Fortunately, it has a 99% survival rate. To achieve such a survival rate, a variety of aggressive therapies are used to treat prostate cancers that are caught early. Androgen deprivation therapy (ADT) is a therapy that is given in cycles to patients. This study attempted to analyze what factors in a group of 79 patients caused them to stick with or discontinue the treatment. This was done using naïve Bayes classification, a machine-learning algorithm. The usage of this algorithm identified high testosterone as an indicator of a patient persevering with the treatment, but failed to produce statistically significant high rates of prediction.

Contributors

Agent

Created

Date Created
  • 2016-12

128512-Thumbnail Image.png

Prevention and Control of Zika as a Mosquito-Borne and Sexually Transmitted Disease: A Mathematical Modeling Analysis

Description

The ongoing Zika virus (ZIKV) epidemic in the Americas poses a major global public health emergency. While ZIKV is transmitted from human to human by bites of Aedes mosquitoes, recent

The ongoing Zika virus (ZIKV) epidemic in the Americas poses a major global public health emergency. While ZIKV is transmitted from human to human by bites of Aedes mosquitoes, recent evidence indicates that ZIKV can also be transmitted via sexual contact with cases of sexually transmitted ZIKV reported in Argentina, Canada, Chile, France, Italy, New Zealand, Peru, Portugal, and the USA. Yet, the role of sexual transmission on the spread and control of ZIKV infection is not well-understood. We introduce a mathematical model to investigate the impact of mosquito-borne and sexual transmission on the spread and control of ZIKV and calibrate the model to ZIKV epidemic data from Brazil, Colombia, and El Salvador. Parameter estimates yielded a basic reproduction number R[subscript 0] = 2.055 (95% CI: 0.523–6.300), in which the percentage contribution of sexual transmission is 3.044% (95% CI: 0.123–45.73). Our sensitivity analyses indicate that R[subscript 0] is most sensitive to the biting rate and mortality rate of mosquitoes while sexual transmission increases the risk of infection and epidemic size and prolongs the outbreak. Prevention and control efforts against ZIKV should target both the mosquito-borne and sexual transmission routes.

Contributors

Agent

Created

Date Created
  • 2016-06-17

129045-Thumbnail Image.png

The Evolutionary Impact of Androgen Levels on Prostate Cancer in a Multi-Scale Mathematical Model

Description

Background: Androgens bind to the androgen receptor (AR) in prostate cells and are essential survival factors for healthy prostate epithelium. Most untreated prostate cancers retain some dependence upon the AR and

Background: Androgens bind to the androgen receptor (AR) in prostate cells and are essential survival factors for healthy prostate epithelium. Most untreated prostate cancers retain some dependence upon the AR and respond, at least transiently, to androgen ablation therapy. However, the relationship between endogenous androgen levels and cancer etiology is unclear. High levels of androgens have traditionally been viewed as driving abnormal proliferation leading to cancer, but it has also been suggested that low levels of androgen could induce selective pressure for abnormal cells. We formulate a mathematical model of androgen regulated prostate growth to study the effects of abnormal androgen levels on selection for pre-malignant phenotypes in early prostate cancer development.

Results: We find that cell turnover rate increases with decreasing androgen levels, which may increase the rate of mutation and malignant evolution. We model the evolution of a heterogeneous prostate cell population using a continuous state-transition model. Using this model we study selection for AR expression under different androgen levels and find that low androgen environments, caused either by low serum testosterone or by reduced 5α-reductase activity, select more strongly for elevated AR expression than do normal environments. High androgen actually slightly reduces selective pressure for AR upregulation. Moreover, our results suggest that an aberrant androgen environment may delay progression to a malignant phenotype, but result in a more dangerous cancer should one arise.

Conclusions: The model represents a useful initial framework for understanding the role of androgens in prostate cancer etiology, and it suggests that low androgen levels can increase selection for phenotypes resistant to hormonal therapy that may also be more aggressive. Moreover, clinical treatment with 5α-reductase inhibitors such as finasteride may increase the incidence of therapy resistant cancers.

Contributors

Created

Date Created
  • 2010-04-20

133171-Thumbnail Image.png

Volume Distributions of Metastatic Brain Tumors

Description

Magnetic resonance imaging (MRI) data of metastatic brain cancer patients at the Barrow Neurological Institute sparked interest in the radiology department due to the possibility that tumor size distributions might

Magnetic resonance imaging (MRI) data of metastatic brain cancer patients at the Barrow Neurological Institute sparked interest in the radiology department due to the possibility that tumor size distributions might mimic a power law or an exponential distribution. In order to consider the question regarding the growth trends of metastatic brain tumors, this thesis analyzes the volume measurements of the tumor sizes from the BNI data and attempts to explain such size distributions through mathematical models. More specifically, a basic stochastic cellular automaton model is used and has three-dimensional results that show similar size distributions of those of the BNI data. Results of the models are investigated using the likelihood ratio test suggesting that, when the tumor volumes are measured based on assuming tumor sphericity, the tumor size distributions significantly mimic the power law over an exponential distribution.

Contributors

Agent

Created

Date Created
  • 2018-12

129538-Thumbnail Image.png

Quiescence as an explanation of Gompertzian tumor growth revisited

Description

Gompertz’s empirical equation remains the most popular one in describing cancer cell population growth in a wide spectrum of bio-medical situations due to its good fit to data and simplicity.

Gompertz’s empirical equation remains the most popular one in describing cancer cell population growth in a wide spectrum of bio-medical situations due to its good fit to data and simplicity. Many efforts were documented in the literature aimed at understanding the mechanisms that may support Gompertz’s elegant model equation. One of the most convincing efforts was carried out by Gyllenberg and Webb. They divide the cancer cell population into the proliferative cells and the quiescent cells. In their two dimensional model, the dead cells are assumed to be removed from the tumor instantly. In this paper, we modify their model by keeping track of the dead cells remaining in the tumor. We perform mathematical and computational studies on this three dimensional model and compare the model dynamics to that of the model of Gyllenberg and Webb. Our mathematical findings suggest that if an avascular tumor grows according to our three-compartment model, then as the death rate of quiescent cells decreases to zero, the percentage of proliferative cells also approaches to zero. Moreover, a slow dying quiescent population will increase the size of the tumor. On the other hand, while the tumor size does not depend on the dead cell removal rate, its early and intermediate growth stages are very sensitive to it.

Contributors

Agent

Created

Date Created
  • 2014-08-01

148396-Thumbnail Image.png

Validation of a Mathematical Model of Intermittent Androgen Deprivation Therapy in Castration-Resistant Prostate Cancer Patietns

Description

Over time, tumor treatment resistance inadvertently develops when androgen de-privation therapy (ADT) is applied to metastasized prostate cancer (PCa). To combat tumor resistance, while reducing the harsh side effects of

Over time, tumor treatment resistance inadvertently develops when androgen de-privation therapy (ADT) is applied to metastasized prostate cancer (PCa). To combat tumor resistance, while reducing the harsh side effects of hormone therapy, the clinician may opt to cyclically alternates the patient’s treatment on and off. This method,known as intermittent ADT, is an alternative to continuous ADT that improves the patient’s quality of life while testosterone levels recover between cycles. In this paper,we explore the response of intermittent ADT to metastasized prostate cancer by employing a previously clinical data validated mathematical model to new clinical data from patients undergoing Abiraterone therapy. This cell quota model, a system of ordinary differential equations constructed using Droop’s nutrient limiting theory, assumes the tumor comprises of castration-sensitive (CS) and castration-resistant (CR)cancer sub-populations. The two sub-populations rely on varying levels of intracellular androgen for growth, death and transformation. Due to the complexity of the model,we carry out sensitivity analyses to study the effect of certain parameters on their outputs, and to increase the identifiability of each patient’s unique parameter set. The model’s forecasting results show consistent accuracy for patients with sufficient data,which means the model could give useful information in practice, especially to decide whether an additional round of treatment would be effective.

Contributors

Agent

Created

Date Created
  • 2021-05

156612-Thumbnail Image.png

Mathematics of climate change and mosquito-borne disease dynamics

Description

The role of climate change, as measured in terms of changes in the climatology of geophysical variables (such as temperature and rainfall), on the global distribution and burden of vector-borne

The role of climate change, as measured in terms of changes in the climatology of geophysical variables (such as temperature and rainfall), on the global distribution and burden of vector-borne diseases (VBDs) remains a subject of considerable debate. This dissertation attempts to contribute to this debate via the use of mathematical (compartmental) modeling and statistical data analysis. In particular, the objective is to find suitable values and/or ranges of the climate variables considered (typically temperature and rainfall) for maximum vector abundance and consequently, maximum transmission intensity of the disease(s) they cause.

Motivated by the fact that understanding the dynamics of disease vector is crucial to understanding the transmission and control of the VBDs they cause, a novel weather-driven deterministic model for the population biology of the mosquito is formulated and rigorously analyzed. Numerical simulations, using relevant weather and entomological data for Anopheles mosquito (the vector for malaria), show that maximum mosquito abundance occurs when temperature and rainfall values lie in the range [20-25]C and [105-115] mm, respectively.

The Anopheles mosquito ecology model is extended to incorporate human dynamics. The resulting weather-driven malaria transmission model, which includes many of the key aspects of malaria (such as disease transmission by asymptomatically-infectious humans, and enhanced malaria immunity due to repeated exposure), was rigorously analyzed. The model which also incorporates the effect of diurnal temperature range (DTR) on malaria transmission dynamics shows that increasing DTR shifts the peak temperature value for malaria transmission from 29C (when DTR is 0C) to about 25C (when DTR is 15C).

Finally, the malaria model is adapted and used to study the transmission dynamics of chikungunya, dengue and Zika, three diseases co-circulating in the Americas caused by the same vector (Aedes aegypti). The resulting model, which is fitted using data from Mexico, is used to assess a few hypotheses (such as those associated with the possible impact the newly-released dengue vaccine will have on Zika) and the impact of variability in climate variables on the dynamics of the three diseases. Suitable temperature and rainfall ranges for the maximum transmission intensity of the three diseases are obtained.

Contributors

Agent

Created

Date Created
  • 2018