Matching Items (2)
Filtering by

Clear all filters

133583-Thumbnail Image.png
Description
Iron (Fe) scarcity limits biological productivity in high-nutrient low-chlorophyll (HNLC) ocean regions. Thus, the input, output and abundance of Fe in seawater likely played a critical role in shaping the development of modern marine ecosystems and perhaps even contributed to past changes in Earth’s climate. Three sources of Fe—wind-blown dust,

Iron (Fe) scarcity limits biological productivity in high-nutrient low-chlorophyll (HNLC) ocean regions. Thus, the input, output and abundance of Fe in seawater likely played a critical role in shaping the development of modern marine ecosystems and perhaps even contributed to past changes in Earth’s climate. Three sources of Fe—wind-blown dust, hydrothermal activity, and sediment dissolution—carry distinct Fe isotopic fingerprints, and can therefore be used to track Fe source variability through time. However, establishing the timing of this source variability through Earth’s history remains challenging because the major depocenters for dissolved Fe in the ocean lack well-established chronologies. This is due to the fact that they are difficult to date with traditional techniques such as biostratigraphy and radiometric dating. Here, I develop age models for sediments collected from the International Drilling Program Expedition 329 by measuring the Os (osmium) isotopic composition of the hydrogenous portion of the clays. These extractions enable dating of the clays by aligning the Os isotope patterns observed in the clays to those in a reference curve with absolute age constraints through the Cenozoic. Our preliminary data enable future development of chronologies for three sediment cores from the high-latitude South Pacific and Southern Oceans, and demonstrate a wider utility of this method to establish age constraints on pelagic sediments worldwide. Moreover, the preliminary Os isotopic data provides a critical first step needed to examine the changes in Fe (iron) sources and cycling on millions of years timescales. Fe isotopic analysis was conducted at the same sites in the South Pacific and demonstrates that there are significant changes in the sources of Fe to the Southern Ocean over the last 90 Ma. These results lay the groundwork for the exploration of basin-scale sources to Fe source changes, which will have implications for understanding how biological productivity relates to Fe source variability over geological timescales.
ContributorsTegler, Logan Ashley (Author) / Anbar, Ariel (Thesis director) / Herckes, Pierre (Committee member) / Romaniello, Stephen (Committee member) / Department of English (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
Wetlands produce approximately one third of total global methane emissions and sequester significant amounts of CO2. Salt marshes make up 5% of total wetland area, and therefore are key factors affecting global methane and CO2 emissions. Many marshes are anthropogenically managed either by diking, draining, impoundment, or otherwise restricting tidal

Wetlands produce approximately one third of total global methane emissions and sequester significant amounts of CO2. Salt marshes make up 5% of total wetland area, and therefore are key factors affecting global methane and CO2 emissions. Many marshes are anthropogenically managed either by diking, draining, impoundment, or otherwise restricting tidal exchange. This causes marsh freshening, increases methane emissions, and releases sequestered carbon, all of which can lead to a warming effect on the climate by the greenhouse effect. We studied the formerly impounded Old County salt marsh, found in the Herring River Estuary of Wellfleet, Massachusetts, USA. The USGS Woods Hole Coastal and Marine Science Center installed two eddy covariance flux towers in the Herring River Estuary. These showed that Old County had low methane fluxes (17 nmol/m2/s) compared to another site in the same estuary (112 nmol/m2/s). The question became; why did Old County experience lower methane emissions? We then did a focused study on the Old County location to investigate. We sampled various biogeochemical parameters including pH, salinity, ORP, dissolved Fe, sulfate, chloride, CH4, DOC, and DIC from pore water samples taken June 2022. We also measured extractable iron from a 2015 archived sediment core at Old County. Specifically, we explored the role of Fe in reducing methane through Fe coupled anaerobic oxidation of methane (Fe-AOM). The porewater depth profiles ranged from 10cm to 242 cm in depth and showed Old County as acidic (pH of 3-6.5), mostly fresh, anoxic, highly reducing, and high in dissolved organic carbon (DOC; 2,000-10,000 μM). I divided the depth profiles into two distinct zones, one above 50 cm and one below 50 cm. Overall, Fe-AOM was likely to occur below 50 cm because dissolved Fe increased as CH4 decreased, which is the expected pattern for Fe-AOM. Also, because the ratio of the calculated methane flux (-0.552 nmol m-2 s-1) to the dissolved Fe (0.072 nmol m-2 s-1) was 7.6, which closely matched the 1 to 8 stoichiometry of the Fe-AOM reactions.
ContributorsEinecker, Rachel (Author) / Hartnett, Hilairy (Thesis director) / Anbar, Ariel (Committee member) / Eagle, Meagan (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2023-12