Matching Items (2)
Filtering by

Clear all filters

141467-Thumbnail Image.png
Description

It is not known whether environmental O2 levels increased in a linear fashion or fluctuated dynamically between the evolution of oxygenic photosynthesis and the later Great Oxidation Event. New rhenium-osmium isotope data from the late Archean Mount McRae Shale, Western Australia, reveal a transient episode of oxidative continental weathering more

It is not known whether environmental O2 levels increased in a linear fashion or fluctuated dynamically between the evolution of oxygenic photosynthesis and the later Great Oxidation Event. New rhenium-osmium isotope data from the late Archean Mount McRae Shale, Western Australia, reveal a transient episode of oxidative continental weathering more than 50 million years before the onset of the Great Oxidation Event. A depositional age of 2495 ± 14 million years and an initial 187Os/188Os of 0.34 ± 0.19 were obtained for rhenium- and molybdenum-rich black shales. The initial 187Os/188Os is higher than the mantle/extraterrestrial value of 0.11, pointing to mild environmental oxygenation and oxidative mobilization of rhenium, molybdenum, and radiogenic osmium from the upper continental crust and to contemporaneous transport of these metals to seawater. By contrast, stratigraphically overlying black shales are rhenium- and molybdenum-poor and have a mantle-like initial 187Os/188Os of 0.06 ± 0.09, indicating a reduced continental flux of rhenium, molybdenum, and osmium to seawater because of a drop in environmental O[subscript 2] levels. Transient oxygenation events, like the one captured by the Mount McRae Shale, probably separated intervals of less oxygenated conditions during the late Archean.

ContributorsKendall, Brian (Author) / Creaser, Robert A. (Author) / Reinhard, Christopher T. (Author) / Lyons, Timothy W. (Author) / Anbar, Ariel (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-11-20
141502-Thumbnail Image.png
Description

Chemical composition affects virtually all aspects of astrobiology, from stellar astrophysics to molecular biology. We present a synopsis of the research results presented at the “Stellar Stoichiometry” Workshop Without Walls hosted at Arizona State University April 11–12, 2013, under the auspices of the NASA Astrobiology Institute. The results focus on

Chemical composition affects virtually all aspects of astrobiology, from stellar astrophysics to molecular biology. We present a synopsis of the research results presented at the “Stellar Stoichiometry” Workshop Without Walls hosted at Arizona State University April 11–12, 2013, under the auspices of the NASA Astrobiology Institute. The results focus on the measurement of chemical abundances and the effects of composition on processes from stellar to planetary scales. Of particular interest were the scientific connections between processes in these normally disparate fields. Measuring the abundances of elements in stars and giant and terrestrial planets poses substantial difficulties in technique and interpretation. One of the motivations for this conference was the fact that determinations of the abundance of a given element in a single star by different groups can differ by more than their quoted errors.

The problems affecting the reliability of abundance estimations and their inherent limitations are discussed. When these problems are taken into consideration, self-consistent surveys of stellar abundances show that there is still substantial variation (factors of ∼2) in the ratios of common elements (e.g., C, O, Na, Al, Mg, Si, Ca) important in rock-forming minerals, atmospheres, and biology. We consider how abundance variations arise through injection of supernova nucleosynthesis products into star-forming material and through photoevaporation of protoplanetary disks. The effects of composition on stellar evolution are substantial, and coupled with planetary atmosphere models can result in predicted habitable zone extents that vary by many tens of percent. Variations in the bulk composition of planets can affect rates of radiogenic heating and substantially change the mineralogy of planetary interiors, affecting properties such as convection and energy transport.

ContributorsYoung, Patrick (Author) / Desch, Steven (Author) / Anbar, Ariel (Author) / Barnes, Rory (Author) / Hinkel, Natalie R. (Author) / Kopparapu, Ravikumar (Author) / Madhusudhan, Nikku (Author) / Monga, Nikhil (Author) / Pagano, Michael (Author) / Riner, Miriam A. (Author) / Scannapieco, Evan (Author) / Shim, Sang-Heon (Author) / Truitt, Amanda (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-07-01