Matching Items (27)

133583-Thumbnail Image.png

Dating Deep-Sea Pelagic Clays with Osmium Isotopes to Reconstruct Sources of Iron to the South Pacific Gyre over 90 Million Years

Description

Iron (Fe) scarcity limits biological productivity in high-nutrient low-chlorophyll (HNLC) ocean regions. Thus, the input, output and abundance of Fe in seawater likely played a critical role in shaping the development of modern marine ecosystems and perhaps even contributed to

Iron (Fe) scarcity limits biological productivity in high-nutrient low-chlorophyll (HNLC) ocean regions. Thus, the input, output and abundance of Fe in seawater likely played a critical role in shaping the development of modern marine ecosystems and perhaps even contributed to past changes in Earth’s climate. Three sources of Fe—wind-blown dust, hydrothermal activity, and sediment dissolution—carry distinct Fe isotopic fingerprints, and can therefore be used to track Fe source variability through time. However, establishing the timing of this source variability through Earth’s history remains challenging because the major depocenters for dissolved Fe in the ocean lack well-established chronologies. This is due to the fact that they are difficult to date with traditional techniques such as biostratigraphy and radiometric dating. Here, I develop age models for sediments collected from the International Drilling Program Expedition 329 by measuring the Os (osmium) isotopic composition of the hydrogenous portion of the clays. These extractions enable dating of the clays by aligning the Os isotope patterns observed in the clays to those in a reference curve with absolute age constraints through the Cenozoic. Our preliminary data enable future development of chronologies for three sediment cores from the high-latitude South Pacific and Southern Oceans, and demonstrate a wider utility of this method to establish age constraints on pelagic sediments worldwide. Moreover, the preliminary Os isotopic data provides a critical first step needed to examine the changes in Fe (iron) sources and cycling on millions of years timescales. Fe isotopic analysis was conducted at the same sites in the South Pacific and demonstrates that there are significant changes in the sources of Fe to the Southern Ocean over the last 90 Ma. These results lay the groundwork for the exploration of basin-scale sources to Fe source changes, which will have implications for understanding how biological productivity relates to Fe source variability over geological timescales.

Contributors

Agent

Created

Date Created
2018-05

Prokaryotic Cells Separated From Sediments are Suitable for Elemental Composition Analysis

Description

Cell-sediment separation methods can potentially enable determination of the elemental composition of microbial communities by removing the sediment elemental contribution from bulk samples. We demonstrate that a separation method can be applied to determine the composition of prokaryotic cells. The

Cell-sediment separation methods can potentially enable determination of the elemental composition of microbial communities by removing the sediment elemental contribution from bulk samples. We demonstrate that a separation method can be applied to determine the composition of prokaryotic cells. The method uses chemical and physical means to extract cells from benthic sediments and mats. Recovery yields were between 5% and 40%, as determined from cell counts. The method conserves cellular element contents to within 30% or better, as assessed by comparing C, N, P, Mg, Al, Ca, Ti, Mn, Fe, Ni, Cu, Zn, and Mo contents in Escherichia coli. Contamination by C, N, and P from chemicals used during the procedure was negligible. Na and K were not conserved, being likely exchanged through the cell membrane as cations during separation. V, Cr, and Co abundances could not be determined due to large (>100%) measurement uncertainties. We applied this method to measure elemental contents in extremophilic communities of Yellowstone National Park hot springs. The method was generally successful at separating cells from sediment, but does not discriminate between cells and detrital biological or noncellular material of similar density. This resulted in Al, Ti, Mn, and Fe contamination, which can be tracked using proxies such as metal:Al ratios. With these caveats, we present the first measurements, to our knowledge, of the elemental abundances of a chemosynthetic community. The communities have C:N ratios typical of aquatic microorganisms, are low in P, and their metal abundances vary between hot springs by orders of magnitude.

Contributors

Created

Date Created
2014-07-01

141467-Thumbnail Image.png

Transient Episodes of Mild Environmental Oxygenation and Oxidative Continental Weathering During the Late Archean

Description

It is not known whether environmental O2 levels increased in a linear fashion or fluctuated dynamically between the evolution of oxygenic photosynthesis and the later Great Oxidation Event. New rhenium-osmium isotope data from the late Archean Mount McRae Shale, Western

It is not known whether environmental O2 levels increased in a linear fashion or fluctuated dynamically between the evolution of oxygenic photosynthesis and the later Great Oxidation Event. New rhenium-osmium isotope data from the late Archean Mount McRae Shale, Western Australia, reveal a transient episode of oxidative continental weathering more than 50 million years before the onset of the Great Oxidation Event. A depositional age of 2495 ± 14 million years and an initial 187Os/188Os of 0.34 ± 0.19 were obtained for rhenium- and molybdenum-rich black shales. The initial 187Os/188Os is higher than the mantle/extraterrestrial value of 0.11, pointing to mild environmental oxygenation and oxidative mobilization of rhenium, molybdenum, and radiogenic osmium from the upper continental crust and to contemporaneous transport of these metals to seawater. By contrast, stratigraphically overlying black shales are rhenium- and molybdenum-poor and have a mantle-like initial 187Os/188Os of 0.06 ± 0.09, indicating a reduced continental flux of rhenium, molybdenum, and osmium to seawater because of a drop in environmental O[subscript 2] levels. Transient oxygenation events, like the one captured by the Mount McRae Shale, probably separated intervals of less oxygenated conditions during the late Archean.

Contributors

Created

Date Created
2015-11-20

154504-Thumbnail Image.png

Aggregation of marine pico-cyanobacteria

Description

Marine pico-cyanobacteria of the genera Synechococcus and Prochlorococcus carry out nearly two thirds of the primary production in oligotrophic oceans. These cyanobacteria are also considered an important constituent of the biological carbon pump, the photosynthetic fixation of CO2 to dissolved

Marine pico-cyanobacteria of the genera Synechococcus and Prochlorococcus carry out nearly two thirds of the primary production in oligotrophic oceans. These cyanobacteria are also considered an important constituent of the biological carbon pump, the photosynthetic fixation of CO2 to dissolved and particulate organic carbon and subsequent export to the ocean’s interior. But single cells of these cyanobacteria are too small to sink, so their carbon export has to be mediated by aggregate formation and/or consumption by zooplankton that produce sinking fecal pellets. In this dissertation, I investigated for the first time the aggregation of these cyanobacteria by studying the marine Synechococcus sp. strain WH8102 as a model organism. I first found in culture experiments that Synechococcus cells aggregated and that such aggregation of cells was related to the production of transparent exopolymeric particles (TEP), known to provide the main matrix of aggregates of eukaryotic phytoplankton. I also found that despite the lowered growth rates, cells in the nitrogen or phosphorus limited cultures had a higher cell-normalized TEP production and formed a greater total volume of aggregates with higher settling velocities compared to cells in the nutrient replete cultures. I further studied the Synechococcus aggregation in roller tanks that allow the simulation of aggregates settling in the water column, and investigated the effects of the clays kaolinite and bentonite that are commonly found in the ocean. In the roller tanks, Synechococcus cells formed aggregates with diameters of up to 1.4 mm and sinking velocities of up to 440 m/d, comparable to those of larger eukaryotic phytoplankton such as diatoms. In addition, the clay minerals increased the number but reduced the size of aggregates, and their ballasting effects increased the sinking velocity and the carbon export potential of the aggregates. Lastly, I investigated the effects of heterotrophic bacteria on the Synechococcus aggregation, and found that heterotrophic bacteria generally resulted in the formation of fewer, but larger and faster sinking aggregates, and eventually led to an enhanced aggregation of cells and particles. My study contributes to the understanding of the role of marine pico-cyanobacteria in the ecology and biogeochemistry of oligotrophic oceans.

Contributors

Agent

Created

Date Created
2016

151140-Thumbnail Image.png

Incorporation and preservation of molybdenum and uranium isotope variations in modern marine sediments

Description

Molybdenum and uranium isotope variations are potentially powerful tools for reconstructing the paleoredox history of seawater. Reliable application and interpretation of these proxies requires not only detailed knowledge about the fractionation factors that control the distribution of molybdenum and uranium

Molybdenum and uranium isotope variations are potentially powerful tools for reconstructing the paleoredox history of seawater. Reliable application and interpretation of these proxies requires not only detailed knowledge about the fractionation factors that control the distribution of molybdenum and uranium isotopes in the marine system, but also a thorough understanding of the diagenetic processes that may affect molybdenum and uranium isotopes entering the rock record. Using samples from the Black Sea water column, the first water column profile of 238U/235U variations from a modern euxinic basin has been measured. This profile allows the direct determination of the 238U/235U fractionation factor in a euxinic marine setting. More importantly however, these data demonstrate the extent of Rayleigh fractionation of U isotopes that can occur in euxinic restricted basins. Because of this effect, the offset of 238U/235U between global average seawater and coeval black shales deposited in restricted basins is expected to depend on the degree of local uranium drawdown from the water column, potentially complicating the interpretation 238U/235U paleorecords. As an alternative to the black shales typically used for paleoredox reconstructions, molybdenum and uranium isotope variations in bulk carbonate sediments from the Bahamas are examined. The focus of this work was to determine what processes, if any, fractionate molybdenum and uranium isotopes during incorporation into bulk carbonate sediments and their subsequent diagenesis. The results demonstrate that authigenic accumulation of molybdenum and uranium from anoxic and sulfidic pore waters is a dominant process controlling the concentration and isotopic composition of these sediments during early diagenesis. Examination of ODP drill core samples from the Bahamas reveals similar behavior for sediments during the first ~780ka of burial, but provides important examples where isolated cores and samples occasionally demonstrate additional fractionation, the cause of which remains poorly understood.

Contributors

Agent

Created

Date Created
2012

149944-Thumbnail Image.png

A new analytical method for measuring hydrogen isotopes using GC-IRMS: applications to hydrous minerals

Description

A new analytical method is proposed for measuring the deuterium to hydrogen ratio (D/H) of non-stoichiometric water in hydrous minerals via pyrolysis facilitated gas-chromatography - isotope ratio mass spectrometry (GC-IRMS). Previously published analytical methods have reported a poorly understood

A new analytical method is proposed for measuring the deuterium to hydrogen ratio (D/H) of non-stoichiometric water in hydrous minerals via pyrolysis facilitated gas-chromatography - isotope ratio mass spectrometry (GC-IRMS). Previously published analytical methods have reported a poorly understood nonlinear dependence of D/H on sample size, for which any accurate correction is difficult. This sample size effect been variously attributed to kinetic isotope fractionation within the mass spectrometer and peripheral instruments, ion source linearity issues, and an unstable H_3^+-factor or incorrect H_3^+-factor calculations. The cause of the sample size effect is here identified by examinations of individual chromatograms as well as bulk data from chromatographic peaks. It is here determined that it is primarily an artifact of the calculations employed by the manufacturer's computer program, used to both monitor the functions of the mass spectrometer and to collect data. Ancillary causes of the sample size effect include a combination of persistent background interferences and chromatographic separation of the isotopologues of molecular hydrogen. Previously published methods are evaluated in light of these findings. A new method of H_3^+-factor and D/H calculation is proposed which makes portions of the Isodat software as well as other published calculation methods unnecessary. Using this new method, D/H is measured in non-stoichiometric water in chert from the Cretaceous Edwards Group, Texas, as well as the Precambrian Kromberg Formation, South Africa, to assess hydrological conditions as well as to estimate the maximum average surface temperature during precipitation of the chert. Data from Cretaceous chert are consistent with previously published data and interpretations, based upon conventional analyses of large samples. Data from Precambrian chert are consistent with maximum average surface temperatures approaching 65°C during the Archean, instead of the much lower temperatures derived from erroneous methods of sample preparation and analysis. D/H is likewise measured in non-stoichiometric water in silicified basalt from the Precambrian Hooggenoeg Complex, South Africa. Data are shown to be consistent with D/H of the Archean ocean similar to present day values.

Contributors

Agent

Created

Date Created
2011

150742-Thumbnail Image.png

Stellar abundances in the solar neighborhood

Description

The only elements that were made in significant quantity during the Big Bang were hydrogen and helium, and to a lesser extent lithium. Depending on the initial mass of a star, it may eject some or all of the unique,

The only elements that were made in significant quantity during the Big Bang were hydrogen and helium, and to a lesser extent lithium. Depending on the initial mass of a star, it may eject some or all of the unique, newly formed elements into the interstellar medium. The enriched gas later collapses into new stars, which are able to form heavier elements due to the presence of the new elements. When we observe the abundances in a stellar regions, we are able to glean the astrophysical phenomena that occurred prior to its formation. I compile spectroscopic abundance data from 49 literature sources for 46 elements across 2836 stars in the solar neighborhood, within 150 pc of the Sun, to produce the Hypatia Catalog. I analyze the variability of the spread in abundance measurements reported for the same star by different surveys, the corresponding stellar atmosphere parameters adopted by various abundance determination methods, and the effect of normalizing all abundances to the same solar scale. The resulting abundance ratios [X/Fe] as a function of [Fe/H] are consistent with stellar nucleosynthetic processes and known Galactic thin-disk trends. I analyze the element abundances for 204 known exoplanet host-stars. In general, I find that exoplanet host-stars are not enriched more than the surrounding population of stars, with the exception of iron. I examine the stellar abundances with respect to both stellar and planetary physical properties, such as orbital period, eccentricity, planetary mass, stellar mass, and stellar color. My data confirms that exoplanet hosts are enriched in [Fe/H] but not in the refractory elements, per the self-enrichment theory for stellar composition. Lastly, I apply the Hypatia Catalog to the Catalog of Potentially Habitable Stellar Systems in order to investigate the abundances in the 1224 overlapping stars. By looking at stars similar to the Sun with respect to six bio-essential elements, I created maps that have located two ``habitability windows'' on the sky: (20.6hr, -4.8deg) and (22.6hr, -48.5deg). These windows may be of use in future targeted or beamed searches.

Contributors

Agent

Created

Date Created
2012

150749-Thumbnail Image.png

Element use and acquisition strategies in biological soil crusts

Description

Biological soil crusts (BSCs) are critical components of arid and semiarid environments and provide the primary sources of bioavailable macronutrients and increase micronutrient availability to their surrounding ecosystems. BSCs are composed of a variety of microorganisms that perform a wide

Biological soil crusts (BSCs) are critical components of arid and semiarid environments and provide the primary sources of bioavailable macronutrients and increase micronutrient availability to their surrounding ecosystems. BSCs are composed of a variety of microorganisms that perform a wide range of physiological processes requiring a multitude of bioessential micronutrients, such as iron, copper, and molybdenum. This work investigated the effects of BSC activity on soil solution concentrations of bioessential elements and examined the microbial production of organic chelators, called siderophores. I found that aluminum, vanadium, copper, zinc, and molybdenum were solubilized in the action of crusts, while nickel, zinc, arsenic, and zirconium were immobilized by crust activity. Potassium and manganese displayed behavior consistent with biological removal and mobilization, whereas phosphorus and iron solubility were dominated by abiotic processes. The addition of bioavailable nitrogen altered the effects of BSCs on soil element mobilization. In addition, I found that the biogeochemical activites of BSCs were limited by molybdenum, a fact that likely contributes to co-limitation by nitrogen. I confirmed the presence of siderophore producing microbes in BSCs. Siderophores are low-molecular weight organic compounds that are released by bacteria to increase element solubility and facilitate element uptake; siderophore production is likely the mechanism by which BSCs affect the patterns I observed in soil solution element concentrations. Siderophore producers were distributed across a range of bacterial groups and ecological niches within crusts, suggesting that siderophore production influences the availability of a variety of elements for use in many physiological processes. Four putative siderophore compounds were identified using electrospray ionization mass spectrometry; further attempts to characterize the compounds confirmed two true siderophores. Taken together, the results of my work provide information about micronutrient cycling within crusts that can be applied to BSC conservation and management. Fertilization with certain elements, particularly molybdenum, may prove to be a useful technique to promote BSC growth and development which would help prevent arid land degradation. Furthermore, understanding the effects of BSCs on soil element mobility could be used to develop useful biomarkers for the study of the existence and distribution of crust-like communities on ancient Earth, and perhaps other places, like Mars.

Contributors

Agent

Created

Date Created
2012

141502-Thumbnail Image.png

Astrobiological Stoichiometry

Description

Chemical composition affects virtually all aspects of astrobiology, from stellar astrophysics to molecular biology. We present a synopsis of the research results presented at the “Stellar Stoichiometry” Workshop Without Walls hosted at Arizona State University April 11–12, 2013, under the

Chemical composition affects virtually all aspects of astrobiology, from stellar astrophysics to molecular biology. We present a synopsis of the research results presented at the “Stellar Stoichiometry” Workshop Without Walls hosted at Arizona State University April 11–12, 2013, under the auspices of the NASA Astrobiology Institute. The results focus on the measurement of chemical abundances and the effects of composition on processes from stellar to planetary scales. Of particular interest were the scientific connections between processes in these normally disparate fields. Measuring the abundances of elements in stars and giant and terrestrial planets poses substantial difficulties in technique and interpretation. One of the motivations for this conference was the fact that determinations of the abundance of a given element in a single star by different groups can differ by more than their quoted errors.

The problems affecting the reliability of abundance estimations and their inherent limitations are discussed. When these problems are taken into consideration, self-consistent surveys of stellar abundances show that there is still substantial variation (factors of ∼2) in the ratios of common elements (e.g., C, O, Na, Al, Mg, Si, Ca) important in rock-forming minerals, atmospheres, and biology. We consider how abundance variations arise through injection of supernova nucleosynthesis products into star-forming material and through photoevaporation of protoplanetary disks. The effects of composition on stellar evolution are substantial, and coupled with planetary atmosphere models can result in predicted habitable zone extents that vary by many tens of percent. Variations in the bulk composition of planets can affect rates of radiogenic heating and substantially change the mineralogy of planetary interiors, affecting properties such as convection and energy transport.

Contributors

Created

Date Created
2014-07-01

152644-Thumbnail Image.png

Biogeochemistry science and education: part one, using non-traditional stable isotopes as environmental tracers : part two, identifying and measuring undergraduate misconceptions in biogeochemistry

Description

This dissertation is presented in two sections. First, I explore two methods of using stable isotope analysis to trace environmental and biogeochemical processes. Second, I present two related studies investigating student understanding of the biogeochemical concepts that underlie part one.

This dissertation is presented in two sections. First, I explore two methods of using stable isotope analysis to trace environmental and biogeochemical processes. Second, I present two related studies investigating student understanding of the biogeochemical concepts that underlie part one. Fe and Hg are each biogeochemically important elements in their own way. Fe is a critical nutrient for phytoplankton, while Hg is detrimental to nearly all forms of life. Fe is often a limiting factor in marine phytoplankton growth. The largest source, by mass, of Fe to the open ocean is windblown mineral dust, but other more soluble sources are more bioavailable. To look for evidence of these non-soil dust sources of Fe to the open ocean, I measured the isotopic composition of aerosol samples collected on Bermuda. I found clear evidence in the fine size fraction of a non-soil dust Fe source, which I conclude is most likely from biomass burning. Widespread adoption of compact fluorescent lamps (CFL) has increased their importance as a source of environmental Hg. Isotope analysis would be a useful tool in quantifying this impact if the isotopic composition of Hg from CFL were known. My measurements show that CFL-Hg is isotopically fractionated, in a unique pattern, during normal operation. This fractionation is large and has a distinctive, mass-independent signature, such that CFL Hg can be uniquely identified from other sources. Misconceptions research in geology has been a very active area of research, but student thinking regarding the related field of biogeochemistry has not yet been studied in detail. From interviews with 40 undergraduates, I identified over 150 specific misconceptions. I also designed a multiple-choice survey (concept inventory) to measure understanding of these same biogeochemistry concepts. I present statistical evidence, based on the Rasch model, for the reliability and validity of this instrument. This instrument will allow teachers and researchers to easily quantify learning outcomes in biogeochemistry and will complement existing concept inventories in geology, chemistry, and biology.

Contributors

Agent

Created

Date Created
2014