Matching Items (5)
Filtering by

Clear all filters

156726-Thumbnail Image.png
Description
Today, we use resources faster than they can be replaced. Construction consumes more resources than any other industry and has one of the largest waste streams. Resource consumption and waste generation are expected to grow as the global population increases. The circular economy (CE) is based on the concept of

Today, we use resources faster than they can be replaced. Construction consumes more resources than any other industry and has one of the largest waste streams. Resource consumption and waste generation are expected to grow as the global population increases. The circular economy (CE) is based on the concept of a closed-loop cycle (CLC) and proposes a solution that, in theory, can eliminate the environmental impacts caused by construction and demolition (C&D) waste and increase the efficiency of resources’ use. In a CLC, building materials are reused, remanufactured, recycled, and reintegrated into other buildings (or into other sectors) without creating any waste.

Designing out waste is the core principle of the CE. Design for disassembly or design for deconstruction (DfD) is the practice of planning the future deconstruction of a building and the reuse of its materials. Concepts like DfD, CE, and product-service systems (PSS) can work together to promote CLC in the built environment. PSS are business models based on stewardship instead of ownership. CE combines DfD, PSS, materials’ durability, and materials’ reuse in multiple life cycles to promote a low-carbon, regenerative economy. CE prioritizes reuse over recycling. Dealing with resource scarcity demands us to think beyond the incremental changes from recycling waste; it demands an urgent, systemic, and radical change in the way we design, build, and procure construction materials.

This dissertation aims to answer three research questions: 1) How can researchers estimate the environmental benefits of reusing building components, 2) What variables are susceptible to affect the environmental impact assessment of reuse, and 3) What are the barriers and opportunities for DfD and materials’ reuse in the current design practice in the United States.

The first part of this study investigated how different life cycle assessment (LCA) methods (i.e., hybrid LCA and process-based LCA), assumptions (e.g., reuse rates, transportation distances, number of reuses), and LCA timelines can affect the results of a closed-loop LCA. The second part of this study built on interviews with architects in the United States to understand why DfD is not part of the current design practice in the country.
ContributorsCruz Rios, Fernanda (Author) / Grau, David (Committee member) / Chong, Oswald (Committee member) / Parrish, Kristen (Committee member) / Arizona State University (Publisher)
Created2018
Description
Regulatory agencies, such as the Occupational Safety and Health Administration (OSHA), and the National Institute of Occupational Safety and Health (NIOSH), recognize that decisions regarding occupational health are often economically driven, with worker health only a secondary concern (Ruttenberg, 2014). To investigate the four National Occupational Research Agenda (NORA) long-standing

Regulatory agencies, such as the Occupational Safety and Health Administration (OSHA), and the National Institute of Occupational Safety and Health (NIOSH), recognize that decisions regarding occupational health are often economically driven, with worker health only a secondary concern (Ruttenberg, 2014). To investigate the four National Occupational Research Agenda (NORA) long-standing health concerns—welding fumes, crystalline silica, noise, and musculoskeletal disorders—a mixed methods research is conducted. Fourfold structuration, a holistic communication process with roots in indigenous/ancient knowledge, is used to organize data and facilitate making tangible relationships of health to productivity and profits that are abstract and often stated by industries, such as construction, as difficult to quantify. From both construction trade worker and occupational health and safety expert interviews data/codes are developed. For the qualitative method, the codes are organized into a constructivist grounded theory depicting the construction industry with regard to its foundation – profits. A theoretical exercise translating the qualitative codes into potential productivity losses is presented as a way for quantifying the abstract relationships of health to productivity. For the quantitative study, the data/codes are used to develop a comprehensive list of practices, barriers to, and catalysts for addressing health in construction. A significant quantitative finding is that occupational health and safety (OSH) experts are not traditionally involved at the highest levels of the OSHA Hierarchy of Controls, where the greatest opportunity to prevent exposure to health hazards is possible. Organized via a holistic framework, this research emphasizes our primary responsibility to each other as highlighted in recent NIOSH worker health agendas.
ContributorsTello, Linda Marguerite (Author) / Grau, David (Thesis advisor) / Koro-Ljungberg, Mirka (Committee member) / Hanemann, Michael (Committee member) / Chong, Oswald (Committee member) / Arizona State University (Publisher)
Created2017
155186-Thumbnail Image.png
Description
In this era of high-tech computer advancements and tremendous programmable computer capabilities, construction cost estimation still remains a knowledge-intensive and experience driven task. High reliance on human expertise, and less accuracy in the decision support tools render cost estimation error prone. Arriving at accurate cost estimates is of paramount importance

In this era of high-tech computer advancements and tremendous programmable computer capabilities, construction cost estimation still remains a knowledge-intensive and experience driven task. High reliance on human expertise, and less accuracy in the decision support tools render cost estimation error prone. Arriving at accurate cost estimates is of paramount importance because it forms the basis of most of the financial, design, and executive decisions concerning the project at subsequent stages. As its unique contribution to the body of knowledge, this paper analyzes the deviations and behavior of costs associated with different construction activities involved in commercial office tenant improvement (TI) projects. The aim of this study is to obtain useful micro-level cost information of various construction activities that make up for the total construction cost of projects. Standardization and classification of construction activities have been carried out based on Construction Specifications Institute’s (CSI) MasterFormat® division items. Construction costs from 51 office TI projects completed during 2015 and 2016 are analyzed statistically to understand the trends among various construction activities involved. It was found that the interior finishes activities showed a much higher cost of construction, and a comparatively higher variation than the mechanical, electrical, and plumbing (MEP) trades. The statistical analysis also revealed a huge scope of energy saving measures that could be achieved in such TI projects because of the absence of energy management systems (EMS) found in 66% of the projects.
ContributorsGhosh, Arunabho (Author) / Grau, David (Thesis advisor) / Ayer, Steven (Committee member) / Parrish, Kristen (Committee member) / Arizona State University (Publisher)
Created2016
189369-Thumbnail Image.png
Description
Large-scale civil infrastructure systems are critical for the functioning and development of any society. However, these systems are often vulnerable to degradation and the effects of aging, necessitating consistent monitoring and maintenance. Current methods for infrastructure maintenance primarily rely on human intervention and need the implementation of advanced sensing and

Large-scale civil infrastructure systems are critical for the functioning and development of any society. However, these systems are often vulnerable to degradation and the effects of aging, necessitating consistent monitoring and maintenance. Current methods for infrastructure maintenance primarily rely on human intervention and need the implementation of advanced sensing and computing technologies in field operations and maintenance (O&M) tasks. This research aimed to address these gaps and provide novel contributions. Specifically, the objectives of this study were to leverage artificial intelligence models to enhance point cloud noise processing, to automate tree species detection using Mask R-CNN, and to integrate imagery data and LiDAR datasets for real-time terrain analysis. First, the study proposed leverages neural networks to eliminate unwanted noise from point cloud datasets, enhancing the accuracy and reliability of infrastructure data. Secondly, the research integrated Mask R-CNN into automated tree species detection. This component offers an efficient solution to identify and classify vegetation surrounding infrastructure, enabling infrastructure managers to devise proactive vegetation management strategies, thereby reducing risks associated with tree-related incidents. Lastly, the study fused image and LiDAR datasets to support real-time terrain analysis. This integrated approach provides a comprehensive understanding of terrain characteristics, allowing infrastructure managers to assess slope, elevation, and other relevant factors, facilitating proactive maintenance interventions and mitigating risks associated with erosion. These contributions collectively underscore the potential of artificial intelligence models in advancing the operations and maintenance practices of large civil infrastructure systems. By leveraging these models, infrastructure managers can optimize decision-making processes, streamline maintenance efforts, and enhance critical infrastructure networks' overall resilience and sustainability.
ContributorsPaladugu, Bala Sai Krishna (Author) / Grau, David (Thesis advisor) / Ernzen, James (Committee member) / Standage, Richard (Committee member) / Arizona State University (Publisher)
Created2023
187379-Thumbnail Image.png
Description
The world faces significant environmental and social challenges due to high economic development, population growth, industrialization, rapid urbanization, and unsustainable consumption. Global communities are taking the necessary measures to confront these international challenges and applying sustainable development principles across all sectors. Construction is a critical driving instrument of economic activity,

The world faces significant environmental and social challenges due to high economic development, population growth, industrialization, rapid urbanization, and unsustainable consumption. Global communities are taking the necessary measures to confront these international challenges and applying sustainable development principles across all sectors. Construction is a critical driving instrument of economic activity, and to achieve sustainable development, it is vital to transform conventional construction into a more sustainable model. The research investigated sustainable construction perceptions in Kuwait, a rapidly growing country with a high volume of construction activities. Kuwait has ambitious plans to transition into a more sustainable economic development model, and the construction industry needs to align with these plans. This research aims to identify the characteristics of sustainable construction applications in the Kuwaiti construction market, such as awareness, current perceptions, drivers and barriers, and the construction regulations' impact. The research utilized a qualitative approach to answer research questions and deliver research objectives by conducting eleven Semi-structured interviews with experienced professionals in the Kuwaiti construction market to collect rich data that reflects insights and understandings of the Kuwaiti construction industry. The Thematic analysis of the data resulted in six themes and one sub-theme that presented reflections, insights, and perspectives on sustainable construction perceptions in the Kuwaiti construction market. The research findings reflected poor sustainable construction awareness and poor environmental and social application in the construction industry, the determinant role of construction regulations in promoting sustainable construction. and barriers and drivers to sustainable construction applications. The research concluded with answers to research questions, delivery of research objectives, and an explanation of sustainable construction perceptions in the Kuwaiti construction market.
Contributorsalsalem, mohammad salem (Author) / Duran, Melanie (Thesis advisor) / Chong, Oswald (Committee member) / Sullivan, Kenneth (Committee member) / Grau, David (Committee member) / Arizona State University (Publisher)
Created2023