Matching Items (3)
Filtering by

Clear all filters

154009-Thumbnail Image.png
Description
Photosynthesis converts sunlight to biomass at a global scale. Among the photosynthetic organisms, cyanobacteria provide an excellent model to study how photosynthesis can become a practical platform of large-scale biotechnology. One novel approach involves metabolically engineering the cyanobacterium Synechocystis sp. PCC 6803 to excrete laurate, which is harvested

Photosynthesis converts sunlight to biomass at a global scale. Among the photosynthetic organisms, cyanobacteria provide an excellent model to study how photosynthesis can become a practical platform of large-scale biotechnology. One novel approach involves metabolically engineering the cyanobacterium Synechocystis sp. PCC 6803 to excrete laurate, which is harvested directly.

This work begins by defining a working window of light intensity (LI). Wild-type and laurate-excreting Synechocystis required an LI of at least 5 µE/m2-s to sustain themselves, but are photo-inhibited by LI of 346 to 598 µE/m2-s.

Fixing electrons into valuable organic products, e.g., biomass and excreted laurate, is critical to success. Wild-type Synechocystis channeled 75% to 84% of its fixed electrons to biomass; laurate-excreting Synechocystis fixed 64 to 69% as biomass and 6.6% to 10% as laurate. This means that 16 to 30% of the electrons were diverted to non-valuable soluble products, and the trend was accentuated with higher LI.

How the Ci concentration depended on the pH and the nitrogen source was quantified by the proton condition and experimentally validated. Nitrate increased, ammonium decreased, but ammonium nitrate stabilized alkalinity and Ci. This finding provides a mechanistically sound tool to manage Ci and pH independently.

Independent evaluation pH and Ci on the growth kinetics of Synechocystis showed that pH 8.5 supported the fastest maximum specific growth rate (µmax): 2.4/day and 1.7/day, respectively, for the wild type and modified strains with LI of 202 µE/m2-s. Half-maximum-rate concentrations (KCi) were less than 0.1 mM, meaning that Synechocystis should attain its µmax with a modest Ci concentration (≥1.0 mM).

Biomass grown with day-night cycles had a night endogenous decay rate of 0.05-1.0/day, with decay being faster with higher LI and the beginning of dark periods. Supplying light at a fraction of daylight reduced dark decay rate and improved overall biomass productivity.

This dissertation systematically evaluates and synthesizes fundamental growth factors of cyanobacteria: light, inorganic carbon (Ci), and pH. LI remains the most critical growth condition to promote biomass productivity and desired forms of biomass, while Ci and pH now can be managed to support optimal productivity.
ContributorsNguyen, Binh Thanh (Author) / Rittmann, Bruce E. (Thesis advisor) / Krajmalnik-Brown, Rosa (Committee member) / Westerhoff, Paul (Committee member) / Arizona State University (Publisher)
Created2015
153584-Thumbnail Image.png
Description
Creating sustainable alternatives to fossil fuel resources is one of the greatest

challenges facing mankind. Solar energy provides an excellent option to alleviate modern dependence on fossil fuels. However, efficient methods to harness solar energy are still largely lacking. Biomass from photosynthetic organisms can be used as feedstock to produce traditional

Creating sustainable alternatives to fossil fuel resources is one of the greatest

challenges facing mankind. Solar energy provides an excellent option to alleviate modern dependence on fossil fuels. However, efficient methods to harness solar energy are still largely lacking. Biomass from photosynthetic organisms can be used as feedstock to produce traditional fuels, but must be produced in great quantities in order to meet the demands of growing populations. Cyanobacteria are prokaryotic photosynthetic microorganisms that can produce biomass on large scales using only sunlight, carbon dioxide, water, and small amounts of nutrients. Thus, Cyanobacteria are a viable option for sustainable production of biofuel feedstock material. Photobioreactors (PBRs) offer a high degree of control over the temperature, aeration, and mixing of cyanobacterial cultures, but cannot be kept sterile due to the scales necessary to meet domestic and global energy demands, meaning that heterotrophic bacteria can grow in PBRs by oxidizing the organic material produced and excreted by the Cyanobacteria. These heterotrophic bacteria can positively or negatively impact the performance of the PBR through their interactions with the Cyanobacteria. This work explores the microbial ecology in PBR cultures of the model cyanobacterium Synechocystis sp. PCC6803 (Synechocystis) using microbiological, molecular, chemical, and engineering techniques. I first show that diverse phylotypes of heterotrophic bacteria can associate with Synechocystis-based PBRs and that excluding them may be impossible under typical PBR operating conditions. Then, I demonstrate that high-throughput sequencing can reliably elucidate the structure of PBR microbial communities without the need for pretreatment to remove Synechocystis 16S rRNA genes, despite the high degree of polyploidy found in Synechocystis. Next, I establish that the structure of PBR microbial communities is strongly influenced by the microbial community of the inoculum culture. Finally, I show that maintaining available phosphorus in the culture medium promotes the production and enrichment of Synechocystis biomass in PBRs by reducing the amount of soluble substrates available to heterotrophic bacteria. This work presents the first analysis of the structure and function of microbial communities associated with Synechocystis-based PBRs.
ContributorsZevin, Alexander Simon (Author) / Rittmann, Bruce E. (Thesis advisor) / Krajmalnik-Brown, Rosa (Thesis advisor) / Vermaas, Willem Fj (Committee member) / Arizona State University (Publisher)
Created2015
135929-Thumbnail Image.png
Description
With global warming becoming a more serious problem and mankind's alarming dependency on fossil fuels, the need for a sustainable and environmentally friendly fuel source is becoming more important. Biofuels produced from photosynthetic microorganisms like algae or cyanobacteria offer a carbon neutral replacement for petroleum fuel sources; however, with the

With global warming becoming a more serious problem and mankind's alarming dependency on fossil fuels, the need for a sustainable and environmentally friendly fuel source is becoming more important. Biofuels produced from photosynthetic microorganisms like algae or cyanobacteria offer a carbon neutral replacement for petroleum fuel sources; however, with the technology and information available today, the amount of biomass that would need to be produced is not economically feasible. In this work, I examined a possible factor impacting the growth of a model cyanobacterium, Synechocystis sp. PCC6803, which is heterotrophic bacteria communities accompanying the cyanobacteria. I experimented with three variables: the type of heterotrophic bacteria strain, the initial concentration of heterotrophic bacteria, and the addition of a carbon source (glucose) to the culture. With experimental information, I identified if given conditions would increase Synechocystis growth and thus increase the yield of biomass. I found that under non-limiting growth conditions, heterotrophic bacteria do not significantly affect the growth of Synechocystis or the corresponding biomass yield. The initial concentration of heterotrophic bacteria and the added glucose also did not affect the growth of Synechocystis. I did see some nutrient recycling from the heterotrophic bacteria as the phosphate levels in the growth medium were depleted, which was apparent from prolonged growth phase and higher levels of reactive phosphate in the media.
ContributorsCahill, Brendan Robert (Author) / Rittmann, Bruce (Thesis director) / Krajmalnik-Brown, Rosa (Committee member) / W. P. Carey School of Business (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12