Matching Items (4)
Filtering by

Clear all filters

152438-Thumbnail Image.png
Description
Water contamination with nitrate (NO3−) (from fertilizers) and perchlorate (ClO4−) (from rocket fuel and explosives) is a widespread environmental problem. I employed the Membrane Biofilm Reactor (MBfR), a novel bioremediation technology, to treat NO3− and ClO4− in the presence of naturally occurring sulfate (SO42−). In the MBfR, bacteria reduce oxidized

Water contamination with nitrate (NO3−) (from fertilizers) and perchlorate (ClO4−) (from rocket fuel and explosives) is a widespread environmental problem. I employed the Membrane Biofilm Reactor (MBfR), a novel bioremediation technology, to treat NO3− and ClO4− in the presence of naturally occurring sulfate (SO42−). In the MBfR, bacteria reduce oxidized pollutants that act as electron acceptors, and they grow as a biofilm on the outer surface of gas-transfer membranes that deliver the electron donor (hydrogen gas, (H2). The overarching objective of my research was to achieve a comprehensive understanding of ecological interactions among key microbial members in the MBfR when treating polluted water with NO3− and ClO4− in the presence of SO42−. First, I characterized competition and co-existence between denitrifying bacteria (DB) and sulfate-reducing bacteria (SRB) when the loading of either the electron donor or electron acceptor was varied. Then, I assessed the microbial community structure of biofilms mostly populated by DB and SRB, linking structure with function based on the electron-donor bioavailability and electron-acceptor loading. Next, I introduced ClO4− as a second oxidized contaminant and discovered that SRB harm the performance of perchlorate-reducing bacteria (PRB) when the aim is complete ClO4− destruction from a highly contaminated groundwater. SRB competed too successfully for H2 and space in the biofilm, forcing the PRB to unfavorable zones in the biofilm. To better control SRB, I tested a two-stage MBfR for total ClO4− removal from a groundwater highly contaminated with ClO4−. I document successful remediation of ClO4− after controlling SO4 2− reduction by restricting electron-donor availability and increasing the acceptor loading to the second stage reactor. Finally, I evaluated the performance of a two-stage pilot MBfR treating water polluted with NO3− and ClO4−, and I provided a holistic understanding of the microbial community structure and diversity. In summary, the microbial community structure in the MBfR contributes to and can be used to explain/predict successful or failed water bioremediation. Based on this understanding, I developed means to manage the microbial community to achieve desired water-decontamination results. This research shows the benefits of looking "inside the box" for "improving the box".
ContributorsOntiveros-Valencia, Aura (Author) / Rittmann, Bruce E. (Thesis advisor) / Krajmalnik-Brown, Rosa (Thesis advisor) / Torres, Cesar I. (Committee member) / Arizona State University (Publisher)
Created2014
153584-Thumbnail Image.png
Description
Creating sustainable alternatives to fossil fuel resources is one of the greatest

challenges facing mankind. Solar energy provides an excellent option to alleviate modern dependence on fossil fuels. However, efficient methods to harness solar energy are still largely lacking. Biomass from photosynthetic organisms can be used as feedstock to produce traditional

Creating sustainable alternatives to fossil fuel resources is one of the greatest

challenges facing mankind. Solar energy provides an excellent option to alleviate modern dependence on fossil fuels. However, efficient methods to harness solar energy are still largely lacking. Biomass from photosynthetic organisms can be used as feedstock to produce traditional fuels, but must be produced in great quantities in order to meet the demands of growing populations. Cyanobacteria are prokaryotic photosynthetic microorganisms that can produce biomass on large scales using only sunlight, carbon dioxide, water, and small amounts of nutrients. Thus, Cyanobacteria are a viable option for sustainable production of biofuel feedstock material. Photobioreactors (PBRs) offer a high degree of control over the temperature, aeration, and mixing of cyanobacterial cultures, but cannot be kept sterile due to the scales necessary to meet domestic and global energy demands, meaning that heterotrophic bacteria can grow in PBRs by oxidizing the organic material produced and excreted by the Cyanobacteria. These heterotrophic bacteria can positively or negatively impact the performance of the PBR through their interactions with the Cyanobacteria. This work explores the microbial ecology in PBR cultures of the model cyanobacterium Synechocystis sp. PCC6803 (Synechocystis) using microbiological, molecular, chemical, and engineering techniques. I first show that diverse phylotypes of heterotrophic bacteria can associate with Synechocystis-based PBRs and that excluding them may be impossible under typical PBR operating conditions. Then, I demonstrate that high-throughput sequencing can reliably elucidate the structure of PBR microbial communities without the need for pretreatment to remove Synechocystis 16S rRNA genes, despite the high degree of polyploidy found in Synechocystis. Next, I establish that the structure of PBR microbial communities is strongly influenced by the microbial community of the inoculum culture. Finally, I show that maintaining available phosphorus in the culture medium promotes the production and enrichment of Synechocystis biomass in PBRs by reducing the amount of soluble substrates available to heterotrophic bacteria. This work presents the first analysis of the structure and function of microbial communities associated with Synechocystis-based PBRs.
ContributorsZevin, Alexander Simon (Author) / Rittmann, Bruce E. (Thesis advisor) / Krajmalnik-Brown, Rosa (Thesis advisor) / Vermaas, Willem Fj (Committee member) / Arizona State University (Publisher)
Created2015
155164-Thumbnail Image.png
Description
ABSTRACT

Sustainable global energy production is one of the grand challenges of the 21st century. Next-generation renewable energy sources include using photosynthetic microbes such as cyanobacteria for efficient production of sustainable fuels from sunlight. The cyanobacterium Synechocystis PCC 6803 (Synechocystis) is a genetically tractable model organism for plant-like photosynthesis that is

ABSTRACT

Sustainable global energy production is one of the grand challenges of the 21st century. Next-generation renewable energy sources include using photosynthetic microbes such as cyanobacteria for efficient production of sustainable fuels from sunlight. The cyanobacterium Synechocystis PCC 6803 (Synechocystis) is a genetically tractable model organism for plant-like photosynthesis that is used to develop microbial biofuel technologies. However, outside of photosynthetic processes, relatively little is known about the biology of microbial phototrophs such as Synechocystis, which impairs their development into market-ready technologies. My research objective was to characterize strategic aspects of Synechocystis biology related to its use in biofuel production; specifically, how the cell surface modulates the interactions between Synechocystis cells and the environment. First, I documented extensive biofouling, or unwanted biofilm formation, in a 4,000-liter roof-top photobioreactor (PBR) used to cultivate Synechocystis, and correlated this cell-binding phenotype with changes in nutrient status by developing a bench-scale assay for axenic phototrophic biofilm formation. Second, I created a library of mutants that lack cell surface structures, and used this biofilm assay to show that mutants lacking the structures pili or S-layer have a non-biofouling phenotype. Third, I analyzed the transcriptomes of cultures showing aggregation, another cell-binding phenotype, and demonstrated that the cells were undergoing stringent response, a type of conserved stress response. Finally, I used contaminant Consortia and statistical modeling to test whether Synechocystis mutants lacking cell surface structures could reduce contaminant growth in mixed cultures. In summary, I have identified genetic and environmental means of manipulating Synechocystis strains for customized adhesion phenotypes, for more economical biomass harvesting and non-biofouling methods. Additionally, I developed a modified biofilm assay and demonstrated its utility in closing a key gap in the field of microbiology related to axenic phototrophic biofilm formation assays. Also, I demonstrated that statistical modeling of contaminant Consortia predicts contaminant growth across diverse species. Collectively, these findings serve as the basis for immediately lowering the cost barrier of Synechocystis biofuels via a more economical biomass-dewatering step, and provide new research tools for improving Synechocystis strains and culture ecology management for improved biofuel production.
ContributorsAllen, Rebecca Custer (Author) / Curtiss Iii, Roy (Thesis advisor) / Krajmalnik-Brown, Rosa (Thesis advisor) / Rittmann, Bruce E. (Committee member) / Vermaas, Willem (Committee member) / Arizona State University (Publisher)
Created2016
154205-Thumbnail Image.png
Description
Microbial Electrochemical Cell (MXC) technology harnesses the power stored in wastewater by using anode respiring bacteria (ARB) as a biofilm catalyst to convert the energy stored in waste into hydrogen or electricity. ARB, or exoelectrogens, are able to convert the chemical energy stored in wastes into electrical energy by transporting

Microbial Electrochemical Cell (MXC) technology harnesses the power stored in wastewater by using anode respiring bacteria (ARB) as a biofilm catalyst to convert the energy stored in waste into hydrogen or electricity. ARB, or exoelectrogens, are able to convert the chemical energy stored in wastes into electrical energy by transporting electrons extracellularly and then transferring them to an electrode. If MXC technology is to be feasible for ‘real world’ applications, it is essential that diverse ARB are discovered and their unique physiologies elucidated- ones which are capable of consuming a broad spectrum of wastes from different contaminated water sources.

This dissertation examines the use of Gram-positive thermophilic (60 ◦C) ARB in MXCs since very little is known regarding the behavior of these microorganisms in this setting. Here, we begin with the draft sequence of the Thermincola ferriacetica genome and reveal the presence of 35 multiheme c-type cytochromes. In addition, we employ electrochemical techniques including cyclic voltammetry (CV) and chronoamperometry (CA) to gain insight into the presence of multiple pathways for extracellular electron transport (EET) and current production (j) limitations in T. ferriacetica biofilms.

Next, Thermoanaerobacter pseudethanolicus, a fermentative ARB, is investigated for its ability to ferment pentose and hexose sugars prior to using its fermentation products, including acetate and lactate, for current production in an MXC. Using CA, current production is tracked over time with the generation and consumption of fermentation products. Using CV, the midpoint potential (EKA) of the T. pseudethanolicus EET pathway is revealed.



Lastly, a cellulolytic microbial consortium was employed for the purpose ofassessing the feasibility of using thermophilic MXCs for the conversion of solid waste into current production. Here, a highly enriched consortium of bacteria, predominately from the Firmicutes phylum, is capable of generating current from solid cellulosic materials.
ContributorsLusk, Bradley (Author) / Torres, César I (Thesis advisor) / Rittmann, Bruce E. (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2015