Matching Items (8)
Filtering by

Clear all filters

Description
Speciation is the fundamental process that has generated the vast diversity of life on earth. The hallmark of speciation is the evolution of barriers to gene flow. These barriers may reduce gene flow either by keeping incipient species from hybridizing at all (pre-zygotic), or by reducing the fitness of hybrids

Speciation is the fundamental process that has generated the vast diversity of life on earth. The hallmark of speciation is the evolution of barriers to gene flow. These barriers may reduce gene flow either by keeping incipient species from hybridizing at all (pre-zygotic), or by reducing the fitness of hybrids (post-zygotic). To understand the genetic architecture of these barriers and how they evolve, I studied a genus of wasps that exhibits barriers to gene flow that act both pre- and post-zygotically. Nasonia is a genus of four species of parasitoid wasps that can be hybridized in the laboratory. When two of these species, N. vitripennis and N. giraulti are mated, their offspring suffer, depending on the generation and cross examined, up to 80% mortality during larval development due to incompatible genic interactions between their nuclear and mitochondrial genomes. These species also exhibit pre-zygotic isolation, meaning they are more likely to mate with their own species when given the choice. I examined these two species and their hybrids to determine the genetic and physiological bases of both speciation mechanisms and to understand the evolutionary forces leading to them. I present results that indicate that the oxidative phosphorylation (OXPHOS) pathway, an essential pathway that is responsible for mitochondrial energy generation, is impaired in hybrids of these two species. These results indicate that this impairment is due to the unique evolutionary dynamics of the combined nuclear and mitochondrial origin of this pathway. I also present results showing that, as larvae, these hybrids experience retarded growth linked to the previously observed mortality and I explore possible physiological mechanisms for this. Finally, I show that the pre-mating isolation is due to a change in a single pheromone component in N. vitripennis males, that this change is under simple genetic control, and that it evolved neutrally before being co-opted as a species recognition signal. These results are an important addition to our overall understanding of the mechanisms of speciation and showcase Nasonia as an emerging model for the study of the genetics of speciation.
ContributorsGibson, Joshua D (Author) / Gadau, Jürgen (Thesis advisor) / Harrison, Jon (Committee member) / Pratt, Stephen (Committee member) / Verrelli, Brian (Committee member) / Willis, Wayne (Committee member) / Arizona State University (Publisher)
Created2013
Description
Well-established model systems exist in four out of the seven major classes of vertebrates. These include the mouse, chicken, frog and zebrafish. Noticeably missing from this list is a reptilian model organism for comparative studies between the vertebrates and for studies of biological processes unique to reptiles. To help fill

Well-established model systems exist in four out of the seven major classes of vertebrates. These include the mouse, chicken, frog and zebrafish. Noticeably missing from this list is a reptilian model organism for comparative studies between the vertebrates and for studies of biological processes unique to reptiles. To help fill in this gap the green anole lizard, Anolis carolinensis, is being adapted as a model organism. Despite the recent release of the complete genomic sequence of the A. carolinensis, the lizard lacks some resources to aid researchers in their studies. Particularly, the lack of transcriptomic resources for lizard has made it difficult to identify genes complete with alternative splice forms and untranslated regions (UTRs). As part of this work the genome annotation for A. carolinensis was improved through next generation sequencing and assembly of the transcriptomes from 14 different adult and embryonic tissues. This revised annotation of the lizard will improve comparative studies between vertebrates, as well as studies within A. carolinensis itself, by providing more accurate gene models, which provide the bases for molecular studies. To demonstrate the utility of the improved annotations and reptilian model organism, the developmental process of somitogenesis in the lizard was analyzed and compared with other vertebrates. This study identified several key features both divergent and convergent between the vertebrates, which was not previously known before analysis of a reptilian model organism. The improved genome annotations have also allowed for molecular studies of tail regeneration in the lizard. With the annotation of 3' UTR sequences and next generation sequencing, it is now possible to do expressional studies of miRNA and predict their mRNA target transcripts at genomic scale. Through next generation small RNA sequencing and subsequent analysis, several differentially expressed miRNAs were identified in the regenerating tail, suggesting miRNA may play a key role in regulating this process in lizards. Through miRNA target prediction several key biological pathways were identified as potentially under the regulation of miRNAs during tail regeneration. In total, this work has both helped advance A. carolinensis as model system and displayed the utility of a reptilian model system.
ContributorsEckalbar, Walter L (Author) / Kusumi, Kenro (Thesis advisor) / Huentelman, Matthew (Committee member) / Rawls, Jeffery (Committee member) / Wilson-Rawls, Norma (Committee member) / Arizona State University (Publisher)
Created2012
151359-Thumbnail Image.png
Description
Cancer is one of the most serious global diseases. We have focused on cancer immunoprevention. My thesis projects include developing a prophylactic primary and metastatic cancer vaccines, early cancer detection and investigation of genes involved in tumor development. These studies were focused on frame-shift (FS) antigens. The FS antigens are

Cancer is one of the most serious global diseases. We have focused on cancer immunoprevention. My thesis projects include developing a prophylactic primary and metastatic cancer vaccines, early cancer detection and investigation of genes involved in tumor development. These studies were focused on frame-shift (FS) antigens. The FS antigens are generated by genomic mutations or abnormal RNA processing, which cause a portion of a normal protein to be translated out of frame. The concept of the prophylactic cancer vaccine is to develop a general cancer vaccine that could prevent healthy people from developing different types of cancer. We have discovered a set of cancer specific FS antigens. One of the FS candidates, structural maintenance of chromosomes protein 1A (SMC1A) FS, could start to accumulate at early stages of tumor and be specifically exposed to the immune system by tumor cells. Prophylactic immunization with SMC1A-FS could significantly inhibit primary tumor development in different murine tumor models and also has the potential to inhibit tumor metastasis. The SMC1A-FS transcript was detected in the plasma of the 4T1/BALB/c mouse tumor model. The tumor size was correlated with the transcript ratio of the SMC1A-FS verses the WT in plasma, which could be measured by regular RT-PCR. This unique cancer biomarker has a practical potential for a large population cancer screen, as well as clinical tumor monitoring. With a set of mimotope peptides, antibodies against SMC1A-FS peptide were detected in different cancer patients, including breast cancer, pancreas cancer and lung cancer with a 53.8%, 56.5% and 12.5% positive rate respectively. This suggested that the FS antibody could be a biomarker for early cancer detection. The characterization of SMC1A suggested that: First, the deficiency of the SMC1A is common in different tumors and able to promote tumor initiation and development; second, the FS truncated protein may have nucleolus function in normal cells. Mis-control of this protein may promote tumor development. In summary, we developed a systematic general cancer prevention strategy through the variety immunological and molecular methods. The results gathered suggest the SMC1A-FS may be useful for the detection and prevention of cancer.
ContributorsShen, Luhui (Author) / Johnston, Stephen Albert (Thesis advisor) / Chang, Yung (Committee member) / Miller, Laurence (Committee member) / Sykes, Kathryn (Committee member) / Jacobs, Bertram (Committee member) / Arizona State University (Publisher)
Created2012
149976-Thumbnail Image.png
Description
The majority of chronic myeloid leukemia (CML) and some of acute lymphocytic leukemia (ALL) cases are associated with possessing the BCR-Abl fusion protein from an oncogenic translocation, resulting in a constantly active form of Abl and rapid proliferation. CML and ALL cells that possess the BCR-Abl fusion protein are known

The majority of chronic myeloid leukemia (CML) and some of acute lymphocytic leukemia (ALL) cases are associated with possessing the BCR-Abl fusion protein from an oncogenic translocation, resulting in a constantly active form of Abl and rapid proliferation. CML and ALL cells that possess the BCR-Abl fusion protein are known as Philadelphia chromosome positive (Ph+). Currently, Imatinib (selective Abl inhibitor) is used as therapy against CML and ALL. However, some patients may have malignancies which show resistance to Imatinib. Previous work displays that the transformation of progenitor B cells with the v-Abl oncogene of Abelson murine leukemia virus results in cell cycle progression, rapid proliferation, and potentially malignant transformation while preventing any further differentiation. Progenitor B cells transformed with the temperature-sensitive form of the v-Abl oncogene have served as a model to study cellular response to Imatinib treatment. After some manipulation, very few cells were forced to progress to malignancy, forming tumor in vivo. These cells were no long sensitive to v-Abl inactivation, resembling the Imatinib resistant ALL. Autophagy is the process by which proteins and organelles are broken-down and recycled within the eukaryotic cell and has been hypothesized to play a part in cancer cell survival and drug-resistance. LC3 processing is a widely accepted marker of autophagy induction and progression. It has also been shown that Imatinib treatment of Ph+ leukemia can induce autophagy. In this study, we examined the autophagy induction in response to v-Abl inactivation in a Ph+-B-ALL cell model that shows resistance to Imatinib. In particular, we wonder whether the tumor cell line resistant to v-Abl inactivation may acquire a high level of autophagy to become resistant to apoptosis induced by v-Abl inactivation, and thus become addicted to autophagy. Indeed, this tumor cell line displays a high basal levels of LC3 I and II expression, regardless of v-Abl activity. We further demonstrated that inhibition of the autophagy pathway enhances the tumor line's sensitivity to Imatinib, resulting in cell cycle arrest and massive apoptosis. The combination of autophagy and Abl inhibitions may serve as an effective therapy for BCR-Abl positive CML.
ContributorsArkus, Nohea (Author) / Chang, Yung (Thesis advisor) / Kusumi, Kenro (Committee member) / Lake, Douglas (Committee member) / Jacobs, Bertram (Committee member) / Arizona State University (Publisher)
Created2011
150705-Thumbnail Image.png
Description
Recombinant protein expression is essential to biotechnology and molecular medicine, but facile methods for obtaining significant quantities of folded and functional protein in mammalian cell culture have been lacking. Here I describe a novel 37-nucleotide in vitro selected sequence that promotes unusually high transgene expression in a vaccinia driven cytoplasmic

Recombinant protein expression is essential to biotechnology and molecular medicine, but facile methods for obtaining significant quantities of folded and functional protein in mammalian cell culture have been lacking. Here I describe a novel 37-nucleotide in vitro selected sequence that promotes unusually high transgene expression in a vaccinia driven cytoplasmic expression system. Vectors carrying this sequence in a monocistronic reporter plasmid produce >1,000-fold more protein than equivalent vectors with conventional vaccinia promoters. Initial mechanistic studies indicate that high protein expression results from dual activity that impacts both transcription and translation. I suggest that this motif represents a powerful new tool in vaccinia-based protein expression and vaccine development technology.
ContributorsFlores, Julia Anne (Author) / Chaput, John C (Thesis advisor) / Jacobs, Bertram (Committee member) / LaBaer, Joshua (Committee member) / Arizona State University (Publisher)
Created2012
152123-Thumbnail Image.png
Description
This dissertation investigates the condition of skeletal muscle insulin resistance using bioinformatics and computational biology approaches. Drawing from several studies and numerous data sources, I have attempted to uncover molecular mechanisms at multiple levels. From the detailed atomistic simulations of a single protein, to datamining approaches applied at the systems

This dissertation investigates the condition of skeletal muscle insulin resistance using bioinformatics and computational biology approaches. Drawing from several studies and numerous data sources, I have attempted to uncover molecular mechanisms at multiple levels. From the detailed atomistic simulations of a single protein, to datamining approaches applied at the systems biology level, I provide new targets to explore for the research community. Furthermore I present a new online web resource that unifies various bioinformatics databases to enable discovery of relevant features in 3D protein structures.
ContributorsMielke, Clinton (Author) / Mandarino, Lawrence (Committee member) / LaBaer, Joshua (Committee member) / Magee, D. Mitchell (Committee member) / Dinu, Valentin (Committee member) / Willis, Wayne (Committee member) / Arizona State University (Publisher)
Created2013
161392-Thumbnail Image.png
Description
Alzheimer’s disease (AD) is the world’s leading cause of dementia and is the sixthleading cause of death in the United States. While AD has been studied for over a century, little progress has been made in terms of treating or preventing disease progression; therefore, new therapeutic drug targets must be

Alzheimer’s disease (AD) is the world’s leading cause of dementia and is the sixthleading cause of death in the United States. While AD has been studied for over a century, little progress has been made in terms of treating or preventing disease progression; therefore, new therapeutic drug targets must be identified. Current clinical trials focus on inhibiting Beta- Secretase 1 (BACE1), the major enzyme involved in the formation of the amyloid beta (Abeta) peptide fragments that aggregate to form insoluble plaques in the brains of AD patients. However, many of these clinical trials have been halted due to neurological effects or organ damage with no substantial cognitive improvements. Because the current leading theory of AD is that the buildup of amyloid plaques leads to metabolic changes that result in the intraneuronal accumulation of hyperphosphorylated Microtubule Associated Protein Tau (TAU, encoded by the MAPT gene), which causes cell death resulting in brain atrophy and dementia (known as the Amyloid Cascade Hypothesis), identifying drug targets that modulate Amyloid Precursor Protein (APP) processing – without directly inhibiting BACE1 – may prove to be a viable treatment. In this work, the role of the Adenosine triphosphate Binding Cassette subfamily C member 1 (ABCC1) was studied in the context of AD. Rare mutations in ABCC1 were identified in a familial case of late-onset AD and in a sporadic case of early-onset AD, and previous laboratories have demonstrated that Abeta is a substrate for ABCC1-mediated export. Although the final experiments reveal no significant difference between the mutant and reference alleles, the data demonstrate that overexpression of ABCC1 modulates APP processing, resulting in decreased Abeta formation and increased alpha- secretase cleavage of the APP molecule, likely via transcriptional modulation of genes that are capable of altering APP metabolism. Therefore, pharmacological interventions that increase either ABCC1 expression or activity may be capable of halting, reversing, or preventing disease progression. Many cancer drug development pipelines have been employed to identify compounds that decrease ABCC1 expression or activity, and it is likely that compounds have been identified that have the opposite effect. These drugs should be studied in the context of Alzheimer’s disease.
ContributorsJepsen, Wayne Mathew (Author) / Huentelman, Matthew (Thesis advisor) / Kusumi, Kenro (Thesis advisor) / Jensen, Kendall (Committee member) / Newbern, Jason (Committee member) / Arizona State University (Publisher)
Created2021
161439-Thumbnail Image.png
Description
Programmed cell death plays an important role in a variety of processes that promote the survival of the host organism. Necroptosis, a form of programmed cell death, occurs through a signaling pathway involving receptor-interacting serine-threonine protein kinase 3 (RIPK3). In response to vaccinia virus infection, necroptosis is induced through DNA-induced

Programmed cell death plays an important role in a variety of processes that promote the survival of the host organism. Necroptosis, a form of programmed cell death, occurs through a signaling pathway involving receptor-interacting serine-threonine protein kinase 3 (RIPK3). In response to vaccinia virus infection, necroptosis is induced through DNA-induced activator of interferon (DAI), which activates RIPK3, leading to death of the cell and thereby inhibiting further viral replication in host cells. DAI also localizes into stress granules, accumulations of mRNAs that have stalled in translation due to cellular stress. The toxin arsenite, a canonical inducer of stress granule formation, was used in this project to study necroptosis. By initiating necroptosis with arsenite and vaccinia virus, this research project investigated the roles of necroptosis proteins and their potential localization into stress granules. The two aims of this research project were to determine whether stress granules are important for arsenite- and virus-induced necroptosis, and whether the proteins DAI and RIPK3 localize into stress granules. The first aim was investigated by establishing a DAI and RIPK3 expression system in U2OS cells; arsenite treatment or vaccinia virus infection was then performed on the U2OS cells as well as on U2OSΔΔG3BP1/2 cells, which are not able to form stress granules. The second aim was carried out by designing fluorescent tagging for the necroptosis proteins in order to visualize protein localization with fluorescent microscopy. The results show that arsenite induces DAI-dependent necroptosis in U2OS cells and that this arsenite-induced necroptosis likely requires stress granules. In addition, the results show that vaccinia virus induces DAI-dependent necroptosis that also likely requires stress granules in U2OS cells. Furthermore, a fluorescent RIPK3 construct was created that will allowfor future studies on protein localization during necroptosis and can be used to answer questions regarding localization of necroptosis proteins into stress granules. This project therefore contributes to a greater understanding of the roles of DAI and RIPK3 in necroptosis, as well as the roles of stress granules in necroptosis, both of which are important in research regarding viral infection and cellular stress.
ContributorsGogerty, Carolina (Author) / Jacobs, Bertram (Thesis advisor) / Langland, Jeffrey (Committee member) / Jentarra, Garilyn (Committee member) / Arizona State University (Publisher)
Created2021