Matching Items (9)
Filtering by

Clear all filters

151290-Thumbnail Image.png
Description
The presence of a number of extinct radionuclides in the early Solar System (SS) is known from geochemical and isotopic studies of meteorites and their components. The half-lives of these isotopes are short relative to the age of the SS, such that they have now decayed to undetectable levels. They

The presence of a number of extinct radionuclides in the early Solar System (SS) is known from geochemical and isotopic studies of meteorites and their components. The half-lives of these isotopes are short relative to the age of the SS, such that they have now decayed to undetectable levels. They can be inferred to exist in the early SS from the presence of their daughter nuclides in meteoritic materials that formed while they were still extant. The extinct radionuclides are particularly useful as fine-scale chronometers for events in the early SS. They can also be used to help constrain the astrophysical setting of the formation of the SS because their short half-lives and unique formation environments yield information about the sources and timing of delivery of material to the protoplanetary disk. Some extinct radionuclides are considered evidence that the Sun interacted with a massive star (supernova) early in its history. The abundance of 60Fe in the early SS is particularly useful for constraining the astrophysical environment of the Sun's formation because, if present in sufficient abundance, its only likely source is injection from a nearby supernova. The initial SS abundance of 60Fe is poorly constrained at the present time, with estimates varying by 1-2 orders of magnitude. I have determined the 60Fe-60Ni isotope systematics of ancient, well-preserved meteorites using high-precision mass spectrometry to better constrain the initial SS abundance of 60Fe. I find identical estimates of the initial 60Fe abundance from both differentiated basaltic meteorites and from components of primitive chondrites formed in the Solar nebula, which suggest a lower 60Fe abundance than other recent estimates. With recent improved meteorite collection efforts there are more rare ungrouped meteorites being found that hold interesting clues to the origin and evolution of early SS objects. I use the 26Al-26Mg extinct radionuclide chronometer to constrain the ages of several recently recovered meteorites that sample previously unknown asteroid lithologies, including the only know felsic meteorite from an asteroid and two other ungrouped basaltic achondrites. These results help broaden our understanding of the timescales involved in igneous differentiation processes in the early SS.
ContributorsSpivak-Birndorf, Lev (Author) / Wadhwa, Meenakshi (Thesis advisor) / Hervig, Richard (Committee member) / Timmes, Francis (Committee member) / Williams, Lynda (Committee member) / Anbar, Ariel (Committee member) / Arizona State University (Publisher)
Created2012
152999-Thumbnail Image.png
Description
The taxonomic and metabolic profile of the microbial community inhabiting a natural system is largely determined by the physical and geochemical properties of the system. However, the influences of parameters beyond temperature, pH and salinity have been poorly analyzed with few studies incorporating the comprehensive suite of physical and geochemical

The taxonomic and metabolic profile of the microbial community inhabiting a natural system is largely determined by the physical and geochemical properties of the system. However, the influences of parameters beyond temperature, pH and salinity have been poorly analyzed with few studies incorporating the comprehensive suite of physical and geochemical measurements required to fully investigate the complex interactions known to exist between biology and the environment. Further, the techniques used to classify the taxonomic and functional composition of a microbial community are fragmented and unwieldy, resulting in unnecessarily complex and often non-consilient results.

This dissertation integrates environmental metagenomes with extensive geochemical metadata for the development and application of multidimensional biogeochemical metrics. Analysis techniques including a Markov cluster-based evolutionary distance between whole communities, oligonucleotide signature-based taxonomic binning and principal component analysis of geochemical parameters allow for the determination of correlations between microbial community dynamics and environmental parameters. Together, these techniques allow for the taxonomic classification and functional analysis of the evolution of hot spring communities. Further, these techniques provide insight into specific geochemistry-biology interactions which enable targeted analyses of community taxonomic and functional diversity. Finally, analysis of synonymous substitution rates among physically separated microbial communities provides insights into microbial dispersion patterns and the roles of environmental geochemistry and community metabolism on DNA transfer among hot spring communities.

The data presented here confirms temperature and pH as the primary factors shaping the evolutionary trajectories of microbial communities. However, the integration of extensive geochemical metadata reveals new links between geochemical parameters and the distribution and functional diversification of communities. Further, an overall geochemical gradient (from multivariate analyses) between natural systems provides one of the most complete predictions of microbial community functional composition and inter-community DNA transfer rates. Finally, the taxonomic classification and clustering techniques developed within this dissertation will facilitate future genomic and metagenomic studies through enhanced community profiling obtainable via Markov clustering, longer oligonucleotide signatures and insight into PCR primer biases.
ContributorsAlsop, Eric Bennie (Author) / Raymond, Jason (Thesis advisor) / Anbar, Ariel (Committee member) / Farmer, Jack (Committee member) / Shock, Everett (Committee member) / Walker, Sarah (Committee member) / Arizona State University (Publisher)
Created2014
149944-Thumbnail Image.png
Description
A new analytical method is proposed for measuring the deuterium to hydrogen ratio (D/H) of non-stoichiometric water in hydrous minerals via pyrolysis facilitated gas-chromatography - isotope ratio mass spectrometry (GC-IRMS). Previously published analytical methods have reported a poorly understood nonlinear dependence of D/H on sample size, for which any

A new analytical method is proposed for measuring the deuterium to hydrogen ratio (D/H) of non-stoichiometric water in hydrous minerals via pyrolysis facilitated gas-chromatography - isotope ratio mass spectrometry (GC-IRMS). Previously published analytical methods have reported a poorly understood nonlinear dependence of D/H on sample size, for which any accurate correction is difficult. This sample size effect been variously attributed to kinetic isotope fractionation within the mass spectrometer and peripheral instruments, ion source linearity issues, and an unstable H_3^+-factor or incorrect H_3^+-factor calculations. The cause of the sample size effect is here identified by examinations of individual chromatograms as well as bulk data from chromatographic peaks. It is here determined that it is primarily an artifact of the calculations employed by the manufacturer's computer program, used to both monitor the functions of the mass spectrometer and to collect data. Ancillary causes of the sample size effect include a combination of persistent background interferences and chromatographic separation of the isotopologues of molecular hydrogen. Previously published methods are evaluated in light of these findings. A new method of H_3^+-factor and D/H calculation is proposed which makes portions of the Isodat software as well as other published calculation methods unnecessary. Using this new method, D/H is measured in non-stoichiometric water in chert from the Cretaceous Edwards Group, Texas, as well as the Precambrian Kromberg Formation, South Africa, to assess hydrological conditions as well as to estimate the maximum average surface temperature during precipitation of the chert. Data from Cretaceous chert are consistent with previously published data and interpretations, based upon conventional analyses of large samples. Data from Precambrian chert are consistent with maximum average surface temperatures approaching 65°C during the Archean, instead of the much lower temperatures derived from erroneous methods of sample preparation and analysis. D/H is likewise measured in non-stoichiometric water in silicified basalt from the Precambrian Hooggenoeg Complex, South Africa. Data are shown to be consistent with D/H of the Archean ocean similar to present day values.
ContributorsSheehan, Michael Robert (Author) / Knauth, Leroy P (Thesis advisor) / Anbar, Ariel (Committee member) / Farmer, Jack (Committee member) / Arizona State University (Publisher)
Created2011
151140-Thumbnail Image.png
Description
Molybdenum and uranium isotope variations are potentially powerful tools for reconstructing the paleoredox history of seawater. Reliable application and interpretation of these proxies requires not only detailed knowledge about the fractionation factors that control the distribution of molybdenum and uranium isotopes in the marine system, but also a thorough understanding

Molybdenum and uranium isotope variations are potentially powerful tools for reconstructing the paleoredox history of seawater. Reliable application and interpretation of these proxies requires not only detailed knowledge about the fractionation factors that control the distribution of molybdenum and uranium isotopes in the marine system, but also a thorough understanding of the diagenetic processes that may affect molybdenum and uranium isotopes entering the rock record. Using samples from the Black Sea water column, the first water column profile of 238U/235U variations from a modern euxinic basin has been measured. This profile allows the direct determination of the 238U/235U fractionation factor in a euxinic marine setting. More importantly however, these data demonstrate the extent of Rayleigh fractionation of U isotopes that can occur in euxinic restricted basins. Because of this effect, the offset of 238U/235U between global average seawater and coeval black shales deposited in restricted basins is expected to depend on the degree of local uranium drawdown from the water column, potentially complicating the interpretation 238U/235U paleorecords. As an alternative to the black shales typically used for paleoredox reconstructions, molybdenum and uranium isotope variations in bulk carbonate sediments from the Bahamas are examined. The focus of this work was to determine what processes, if any, fractionate molybdenum and uranium isotopes during incorporation into bulk carbonate sediments and their subsequent diagenesis. The results demonstrate that authigenic accumulation of molybdenum and uranium from anoxic and sulfidic pore waters is a dominant process controlling the concentration and isotopic composition of these sediments during early diagenesis. Examination of ODP drill core samples from the Bahamas reveals similar behavior for sediments during the first ~780ka of burial, but provides important examples where isolated cores and samples occasionally demonstrate additional fractionation, the cause of which remains poorly understood.
ContributorsRomaniello, Stephen J. (Author) / Anbar, Ariel (Thesis advisor) / Hartnett, Hilairy (Committee member) / Herrmann, Achim (Committee member) / Shock, Everett (Committee member) / Wadhwa, Meenakshi (Committee member) / Arizona State University (Publisher)
Created2012
156694-Thumbnail Image.png
Description
There is a growing body of evidence that the evolving redox structure of the oceans has been an important influence on the evolutionary trajectory of animals. However, current understanding of connections between marine redox conditions and marine extinctions and recoveries is hampered by limited detailed knowledge of the timing, duration,

There is a growing body of evidence that the evolving redox structure of the oceans has been an important influence on the evolutionary trajectory of animals. However, current understanding of connections between marine redox conditions and marine extinctions and recoveries is hampered by limited detailed knowledge of the timing, duration, and extent of marine redox changes.

The recent development of U isotopes (δ238U) in carbonates as a global ocean redox proxy has provided new insight into this problem. Reliable application and interpretation of the δ238U paleoproxy in geological records requires a thorough understanding of the reliability of δ238U recorded by bulk carbonate sediments. In this dissertation, I evaluate the robustness of δ238U paleoproxy by examining δ238U variations in marine carbonates across Permian-Triassic boundary (PTB) sections from different paleogeographic locations. Close agreement of δ238U profiles from coeval carbonate sections thousands of kilometers apart, in different ocean basins, and with different diagenetic histories, strongly suggests that bulk carbonate sediments can reliably preserve primary marine δ238U signals, validating the carbonate U-isotope proxy for global-ocean redox analysis.

To improve understanding of the role of marine redox in shaping the evolutionary trajectory of animals, high-resolution δ238U records were generated across several key evolutionary periods, including the Ediacaran-to-Early Cambrian Explosion of complex life (635-541 Ma) and the delayed Early Triassic Earth system recovery from the PTB extinction (252-246 Ma). Based on U isotope variations in the Ediacaran-to-the Early Cambrian ocean, the initial diversification of the Ediacara biota immediately postdates an episode of pervasive ocean oxygenation across the Shuram event. The subsequent decline and extinction of the Ediacara biota is coincident with an episode of extensive anoxic conditions during the latest Ediacaran Period. These findings suggest that global marine redox changes drove the rise and fall of the Ediacara biota. Based on U isotope variations, the Early Triassic ocean was characterized by multiple episodes of extensive marine anoxia. By comparing the high-resolution δ238U record with the sub-stage ammonoid extinction rate curve, it appears that multiple oscillations in marine anoxia modulated the recovery of marine ecosystems following the latest Permian mass extinction.
ContributorsZhang, Feifei (Author) / Anbar, Ariel (Thesis advisor) / Gordon, Gwyneth (Committee member) / Hartnett, Hilairy (Committee member) / Wadhwa, Meenakshi (Committee member) / Ruff, Steven (Committee member) / Arizona State University (Publisher)
Created2018
156658-Thumbnail Image.png
Description
Education through field exploration is fundamental in geoscience. But not all students enjoy equal access to field-based learning because of time, cost, distance, ability, and safety constraints. At the same time, technological advances afford ever more immersive, rich, and student-centered virtual field experiences. Virtual field trips may be the only

Education through field exploration is fundamental in geoscience. But not all students enjoy equal access to field-based learning because of time, cost, distance, ability, and safety constraints. At the same time, technological advances afford ever more immersive, rich, and student-centered virtual field experiences. Virtual field trips may be the only practical options for most students to explore pedagogically rich but inaccessible places. A mixed-methods research project was conducted on an introductory and an advanced geology class to explore the implications of learning outcomes of in-person and virtual field-based instruction at Grand Canyon National Park. The study incorporated the Great Unconformity in the Grand Canyon, a 1.2 billion year break in the rock record; the Trail of Time, an interpretive walking timeline; and two immersive, interactive virtual field trips (iVFTs). The in-person field trip (ipFT) groups collectively explored the canyon and took an instructor-guided inquiry hike along the interpretive Trail of Time from rim level, while iVFT students individually explored the canyon and took a guided-inquiry virtual tour of Grand Canyon geology from river level. High-resolution 360° spherical images anchor the iVFTs and serve as a framework for programmed overlays that enable interactivity and allow the iVFT to provide feedback in response to student actions. Students in both modalities received pre- and post-trip Positive and Negative Affect Schedules (PANAS). The iVFT students recorded pre- to post-trip increases in positive affect (PA) scores and decreases in negative (NA) affect scores, representing an affective state conducive to learning. Pre- to post-trip mean scores on concept sketches used to assess visualization and geological knowledge increased for both classes and modalities. However, the iVFT pre- to post-trip increases were three times greater (statistically significant) than the ipFT gains. Both iVFT and ipFT students scored 92-98% on guided-inquiry worksheets completed during the trips, signifying both met learning outcomes. Virtual field trips do not trump traditional in-person field work, but they can meet and/or exceed similar learning objectives and may replace an inaccessible or impractical in-person field trip.
ContributorsRuberto, Thomas (Author) / Semken, Steve (Thesis advisor) / Anbar, Ariel (Committee member) / Brownell, Sara (Committee member) / Arizona State University (Publisher)
Created2018
187792-Thumbnail Image.png
Description
In-person field education through exploration is fundamental in geoscience, but equal access is limited by time, cost, safety, distance, physical ability, and instructor variability. Technology advances allow students to explore pedagogically rich but inaccessible places through virtual field trips (VFTs). Studies show that VFTs result in significant learning gains and

In-person field education through exploration is fundamental in geoscience, but equal access is limited by time, cost, safety, distance, physical ability, and instructor variability. Technology advances allow students to explore pedagogically rich but inaccessible places through virtual field trips (VFTs). Studies show that VFTs result in significant learning gains and are an effective learning modality. Most research has focused on instructor-generated VFTs disseminated through a top-down model, whereas technological innovations are making user-generated VFTs more practical. This longitudinal, mixed-methods study decentralized the production of VFTs by teaching students and educators to build their own VFTs for place-based education via the proposed Virtual Field Trip Production Process for Place-Based Education. Students and educators produced seven place-based VFTs reviewed by subject-matter experts that are currently being used as digital learning experiences in high school and college settings. Place-based education (PBE) traditionally occurs in actual places, while VFTs convey an actual place virtually and can share the same learning objectives as their in-person counterparts. Sense of place, the combination of meanings and attachments an individual or group ascribes to a given place, is a measurable learning outcome of PBE with cognitive, affective, and behavioral components. Participants were administered the Positive and Negative Affect Schedule (PANAS), Place Attachment Inventory (PAI), and Young’s Place Meaning Survey (YPMS). Regression analysis showed statistically significant increases in positive affect (PA) and statistically significant decreases in negative affect (NA) as well as statistically significant gains in sense of place and content knowledge. In both geology and PBE, drawing is an important tool for learning, teaching, and assessing. Current VFT software environments do not allow users to digitally draw within the platform. This study examined differences in learning outcomes and final grades between students submitting mechanical versus digital drawings, geologic maps, and concept sketches. Regression analysis of the drawing, geologic map, and concept sketch exercises revealed no statistically significant differences between mechanical and digital drawing modalities in both learning outcomes and final grades. Geoscience educators can confidently allow students to submit digital drawings while software programmers and learning designers should consider adding this capability to their VFT platforms.
ContributorsRuberto, Thomas (Author) / Semken, Steve (Thesis advisor) / Anbar, Ariel (Committee member) / Reynolds, Steve (Committee member) / Johnson, Julia (Committee member) / DeVecchio, Duane (Committee member) / Arizona State University (Publisher)
Created2023
156998-Thumbnail Image.png
Description
Ethnogeology is the scientific study of human relationships with the Earth as a system, typically conducted within the context of a specific culture. Indigenous or historically resident people may perceive local places differently from outside observers trained in the Western tradition. Ethnogeologic knowledge includes traditional indigenous knowledge (alternatively referred

Ethnogeology is the scientific study of human relationships with the Earth as a system, typically conducted within the context of a specific culture. Indigenous or historically resident people may perceive local places differently from outside observers trained in the Western tradition. Ethnogeologic knowledge includes traditional indigenous knowledge (alternatively referred to as traditional ecological knowledge or TEK), which exceeds the boundaries of non-Indigenous ideas of physical characteristics of the world, tends to be more holistic, and is culturally framed. In this ethnogeological study, I have implemented several methods of participatory rapid assessment (PRA) from the discipline of field ethnography to collect culturally framed geological knowledge, as well to measure the authenticity of the knowledge collected. I constructed a cultural consensus model (CCM) about karst as a domain of knowledge. The study area is located in the karst physiographic region of the Caribbean countries of the Dominican Republic (DR) and Puerto Rico (PR). Ethnogeological data collected and analyzed using CCM satisfied the requirements of a model where I have found statistically significance among participant’s agreement and competence values. Analysis of the competence means in the population of DR and PR results in p < 0.05 validating the methods adapted for this study. I discuss the CCM for the domain of karst (in its majority) that is shared among consultants in the countries of PR and the DR that is in the form of metaphors and other forms of culturally framed descriptions. This work continuing insufficient representation of minority groups such as Indigenous people, Native Americans, Alaska Natives, and Hispanic/Latinxs in the Earth Sciences.
ContributorsGarcia, Angel Antonio (Author) / Semken, Steven (Thesis advisor) / Brandt, Elizabeth, (Committee member) / Shock, Everett (Committee member) / Bowman, Catherine (Committee member) / Anbar, Ariel (Committee member) / Arizona State University (Publisher)
Created2018
190707-Thumbnail Image.png
Description
Scientific research encompasses a variety of objectives, including measurement, making predictions, identifying laws, and more. The advent of advanced measurement technologies and computational methods has largely automated the processes of big data collection and prediction. However, the discovery of laws, particularly universal ones, still heavily relies on human intellect. Even

Scientific research encompasses a variety of objectives, including measurement, making predictions, identifying laws, and more. The advent of advanced measurement technologies and computational methods has largely automated the processes of big data collection and prediction. However, the discovery of laws, particularly universal ones, still heavily relies on human intellect. Even with human intelligence, complex systems present a unique challenge in discerning the laws that govern them. Even the preliminary step, system description, poses a substantial challenge. Numerous metrics have been developed, but universally applicable laws remain elusive. Due to the cognitive limitations of human comprehension, a direct understanding of big data derived from complex systems is impractical. Therefore, simplification becomes essential for identifying hidden regularities, enabling scientists to abstract observations or draw connections with existing knowledge. As a result, the concept of macrostates -- simplified, lower-dimensional representations of high-dimensional systems -- proves to be indispensable. Macrostates serve a role beyond simplification. They are integral in deciphering reusable laws for complex systems. In physics, macrostates form the foundation for constructing laws and provide building blocks for studying relationships between quantities, rather than pursuing case-by-case analysis. Therefore, the concept of macrostates facilitates the discovery of regularities across various systems. Recognizing the importance of macrostates, I propose the relational macrostate theory and a machine learning framework, MacroNet, to identify macrostates and design microstates. The relational macrostate theory defines a macrostate based on the relationships between observations, enabling the abstraction from microscopic details. In MacroNet, I propose an architecture to encode microstates into macrostates, allowing for the sampling of microstates associated with a specific macrostate. My experiments on simulated systems demonstrate the effectiveness of this theory and method in identifying macrostates such as energy. Furthermore, I apply this theory and method to a complex chemical system, analyzing oil droplets with intricate movement patterns in a Petri dish, to answer the question, ``which combinations of parameters control which behavior?'' The macrostate theory allows me to identify a two-dimensional macrostate, establish a mapping between the chemical compound and the macrostate, and decipher the relationship between oil droplet patterns and the macrostate.
ContributorsZhang, Yanbo (Author) / Walker, Sara I (Thesis advisor) / Anbar, Ariel (Committee member) / Daniels, Bryan (Committee member) / Das, Jnaneshwar (Committee member) / Davies, Paul (Committee member) / Arizona State University (Publisher)
Created2023