Matching Items (3)
Filtering by

Clear all filters

Description
Elizabeth Grumbach, the project manager of the Institute for Humanities Research's Digital Humanities Initiative, shares methodologies and best practices for designing a digital humanities project. The workshop will offer participants an introduction to digital humanities fundamentals, specifically tools and methodologies. Participants explore technologies and platforms that allow scholars of all

Elizabeth Grumbach, the project manager of the Institute for Humanities Research's Digital Humanities Initiative, shares methodologies and best practices for designing a digital humanities project. The workshop will offer participants an introduction to digital humanities fundamentals, specifically tools and methodologies. Participants explore technologies and platforms that allow scholars of all skills levels to engage with digital humanities methods. Participants will be introduced to a variety of tools (including mapping, visualization, data analytics, and multimedia digital publication platforms), and how and why to choose specific applications, platforms, and tools based on project needs.
ContributorsGrumbach, Elizabeth (Author)
Created2018-09-26
168385-Thumbnail Image.png
Description
How is knowledge created at the intersections between basic science, biotechnology, and industry? Gene drives are an interesting example, as they combine a long-standing interest with a recent technological breakthrough and a new set of commercial applications. Gene drives are genes engineered such that they are preferentially inherited at a

How is knowledge created at the intersections between basic science, biotechnology, and industry? Gene drives are an interesting example, as they combine a long-standing interest with a recent technological breakthrough and a new set of commercial applications. Gene drives are genes engineered such that they are preferentially inherited at a frequency greater than the typical Mendelian fifty percent ratio. During the historical and conceptual evolution of gene drives beginning in the 1960s, there have been many innovations and publications. Along with that, gene drive science developed considerable public attention, explosion of new scientists, and variation in the way the topic is discussed. It is now time to look at this new organization of science using a systematic approach to characterize the system that has enabled knowledge to grow in this scientific field. This project breaks new ground in how knowledge advances in genetic engineering science, and how scientists understand what a “gene drive” is through analysis of language, communities, and other social factors. In effect, this research will advance multiple fields and enable a deeper understanding of knowledge and complexity. This project documents patterns of publication, collaborative relationships, linguistic variation, innovation, and knowledge expansion. The results of computational analysis provide an in-depth and complete characterization of the structure, dynamics, and evolution of scientific knowledge found in the gene drive technology. Further, time series analysis of the multiple layers of discourse enabled a diachronic connective mapping of collaborative relationships and tracked linguistic variation and change, highlighting where ambiguous language may appear, improving and creating more cohesive scientific language. Overall, depicting the structure, dynamics, and evolution of scientific knowledge during a novel eruption of scientific complexity can shed light on the factors that can lead to: (1) improved scientific communication, (2) reduction of scientific progress, (3) new knowledge, and (4) novel collaborative relationships. Therefore, characterizing the current technological, methodological, and social contexts that can influence scientific knowledge.
ContributorsOToole, Cody Lane (Author) / Laubichler, Manfred (Thesis advisor) / Collins, James P (Committee member) / Simeone, Michael (Committee member) / Evans, James (Committee member) / Arizona State University (Publisher)
Created2021
153012-Thumbnail Image.png
Description
Computational tools in the digital humanities often either work on the macro-scale, enabling researchers to analyze huge amounts of data, or on the micro-scale, supporting scholars in the interpretation and analysis of individual documents. The proposed research system that was developed in the context of this dissertation ("Quadriga System") works

Computational tools in the digital humanities often either work on the macro-scale, enabling researchers to analyze huge amounts of data, or on the micro-scale, supporting scholars in the interpretation and analysis of individual documents. The proposed research system that was developed in the context of this dissertation ("Quadriga System") works to bridge these two extremes by offering tools to support close reading and interpretation of texts, while at the same time providing a means for collaboration and data collection that could lead to analyses based on big datasets. In the field of history of science, researchers usually use unstructured data such as texts or images. To computationally analyze such data, it first has to be transformed into a machine-understandable format. The Quadriga System is based on the idea to represent texts as graphs of contextualized triples (or quadruples). Those graphs (or networks) can then be mathematically analyzed and visualized. This dissertation describes two projects that use the Quadriga System for the analysis and exploration of texts and the creation of social networks. Furthermore, a model for digital humanities education is proposed that brings together students from the humanities and computer science in order to develop user-oriented, innovative tools, methods, and infrastructures.
ContributorsDamerow, Julia (Author) / Laubichler, Manfred (Thesis advisor) / Maienschein, Jane (Thesis advisor) / Creath, Richard (Committee member) / Ellison, Karin (Committee member) / Hooper, Wallace (Committee member) / Renn, Jürgen (Committee member) / Arizona State University (Publisher)
Created2014