Matching Items (3)

Filtering by

Clear all filters

Applications of Deep Neural Networks to Neurocognitive Poetics: A Quantitative Study of the Project Gutenberg English Poetry Corpus

Description

With the advent of sophisticated computer technology, we increasingly see the use of computational techniques in the study of problems from a variety of disciplines, including the humanities. In a field such as poetry, where classic works are subject to

With the advent of sophisticated computer technology, we increasingly see the use of computational techniques in the study of problems from a variety of disciplines, including the humanities. In a field such as poetry, where classic works are subject to frequent re-analysis over the course of years, decades, or even centuries, there is a certain demand for fresh approaches to familiar tasks, and such breaks from convention may even be necessary for the advancement of the field. Existing quantitative studies of poetry have employed computational techniques in their analyses, however, there remains work to be done with regards to the deployment of deep neural networks on large corpora of poetry to classify portions of the works contained therein based on certain features. While applications of neural networks to social media sites, consumer reviews, and other web-originated data are common within computational linguistics and natural language processing, comparatively little work has been done on the computational analysis of poetry using the same techniques. In this work, I begin to lay out the first steps for the study of poetry using neural networks. Using a convolutional neural network to classify author birth date, I was able to not only extract a non-trivial signal from the data, but also identify the presence of clustering within by-author model accuracy. While definitive conclusions about the cause of this clustering were not reached, investigation of this clustering reveals immense heterogeneity in the traits of accurately classified authors. Further study may unpack this clustering and reveal key insights about how temporal information is encoded in poetry. The study of poetry using neural networks remains very open but exhibits potential to be an interesting and deep area of work.

Contributors

Agent

Created

Date Created
2019-05

Designing a Digital Humanities Project Presentation

Description

Elizabeth Grumbach, the project manager of the Institute for Humanities Research's Digital Humanities Initiative, shares methodologies and best practices for designing a digital humanities project. The workshop will offer participants an introduction to digital humanities fundamentals, specifically tools and methodologies.

Elizabeth Grumbach, the project manager of the Institute for Humanities Research's Digital Humanities Initiative, shares methodologies and best practices for designing a digital humanities project. The workshop will offer participants an introduction to digital humanities fundamentals, specifically tools and methodologies. Participants explore technologies and platforms that allow scholars of all skills levels to engage with digital humanities methods. Participants will be introduced to a variety of tools (including mapping, visualization, data analytics, and multimedia digital publication platforms), and how and why to choose specific applications, platforms, and tools based on project needs.

Contributors

Agent

Created

Date Created
2018-09-26

153012-Thumbnail Image.png

A Quadruple-Based Text Analysis System for History and Philosophy of Science

Description

Computational tools in the digital humanities often either work on the macro-scale, enabling researchers to analyze huge amounts of data, or on the micro-scale, supporting scholars in the interpretation and analysis of individual documents. The proposed research system that was

Computational tools in the digital humanities often either work on the macro-scale, enabling researchers to analyze huge amounts of data, or on the micro-scale, supporting scholars in the interpretation and analysis of individual documents. The proposed research system that was developed in the context of this dissertation ("Quadriga System") works to bridge these two extremes by offering tools to support close reading and interpretation of texts, while at the same time providing a means for collaboration and data collection that could lead to analyses based on big datasets. In the field of history of science, researchers usually use unstructured data such as texts or images. To computationally analyze such data, it first has to be transformed into a machine-understandable format. The Quadriga System is based on the idea to represent texts as graphs of contextualized triples (or quadruples). Those graphs (or networks) can then be mathematically analyzed and visualized. This dissertation describes two projects that use the Quadriga System for the analysis and exploration of texts and the creation of social networks. Furthermore, a model for digital humanities education is proposed that brings together students from the humanities and computer science in order to develop user-oriented, innovative tools, methods, and infrastructures.

Contributors

Agent

Created

Date Created
2014