Matching Items (3)
Filtering by

Clear all filters

135594-Thumbnail Image.png
Description
One of the newest technologies available for agricultural use is the sequencing of the bovine genome and the identification of specific genes that would ensure favorable physical traits in the herd. An easy way for this technology to be utilized is in the milking herds of dairies, the herd has

One of the newest technologies available for agricultural use is the sequencing of the bovine genome and the identification of specific genes that would ensure favorable physical traits in the herd. An easy way for this technology to be utilized is in the milking herds of dairies, the herd has already been bred for specific traits and any change due to a genomic influence would be easily seen. Dairy cattle are commonly bred through artificial insemination, and this would be a perfect place for the genomic programs to prove themselves. In order to determine the attitudes of local dairymen toward genomics, I designed and administered a survey to gauge their opinions. The survey was given to a meeting of the United Dairymen of Arizona at their Tempe offices. The survey covered the current breeding methods used by the dairies, the desired attributes in a milking herd and a breeding program, and a place for the dairymen to give their own opinions on genomics. The results indicated that the dairymen are interested of using genomics, but they are unsure of the cost. Dairymen are often looking for new methods to increase their milk production and herd value, but are reluctant to pay a high amount. One recommendation is for these dairymen to utilize bulls that have had their genome analyzed when they are breeding their cows. This would allow the dairymen to see the effects and benefits of genomics on their herd without the dairymen having to front the large start up cost for their own genomic program.
ContributorsCooley, Haley Rayanne (Author) / Grebitus, Carola (Thesis director) / Schmitz, Troy (Committee member) / Morrison School of Agribusiness (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description

Agassiz’s desert tortoise (Gopherus agassizii) is a long-lived species native to the Mojave Desert and is listed as threatened under the US Endangered Species Act. To aid conservation efforts for preserving the genetic diversity of this species, we generated a whole genome reference sequence with an annotation based on dee

Agassiz’s desert tortoise (Gopherus agassizii) is a long-lived species native to the Mojave Desert and is listed as threatened under the US Endangered Species Act. To aid conservation efforts for preserving the genetic diversity of this species, we generated a whole genome reference sequence with an annotation based on deep transcriptome sequences of adult skeletal muscle, lung, brain, and blood. The draft genome assembly for G. agassizii has a scaffold N50 length of 252 kbp and a total length of 2.4 Gbp. Genome annotation reveals 20,172 protein-coding genes in the G. agassizii assembly, and that gene structure is more similar to chicken than other turtles. We provide a series of comparative analyses demonstrating (1) that turtles are among the slowest-evolving genome-enabled reptiles, (2) amino acid changes in genes controlling desert tortoise traits such as shell development, longevity and osmoregulation, and (3) fixed variants across the Gopherus species complex in genes related to desert adaptations, including circadian rhythm and innate immune response. This G. agassizii genome reference and annotation is the first such resource for any tortoise, and will serve as a foundation for future analysis of the genetic basis of adaptations to the desert environment, allow for investigation into genomic factors affecting tortoise health, disease and longevity, and serve as a valuable resource for additional studies in this species complex.

Data Availability: All genomic and transcriptomic sequence files are available from the NIH-NCBI BioProject database (accession numbers PRJNA352725, PRJNA352726, and PRJNA281763). All genome assembly, transcriptome assembly, predicted protein, transcript, genome annotation, repeatmasker, phylogenetic trees, .vcf and GO enrichment files are available on Harvard Dataverse (doi:10.7910/DVN/EH2S9K).

ContributorsTollis, Marc (Author) / DeNardo, Dale F (Author) / Cornelius, John A (Author) / Dolby, Greer A (Author) / Edwards, Taylor (Author) / Henen, Brian T. (Author) / Karl, Alice E. (Author) / Murphy, Robert W. (Author) / Kusumi, Kenro (Author)
Created2017-05-31
Description
Cancer is a disease which can affect all animals across the tree of life. Certain species have undergone natural selection to reduce or prevent cancer. Mechanisms to block cancer may include, among others, a species possessing additional paralogues of tumor suppressor genes, or decreasing the number of oncogenes within their

Cancer is a disease which can affect all animals across the tree of life. Certain species have undergone natural selection to reduce or prevent cancer. Mechanisms to block cancer may include, among others, a species possessing additional paralogues of tumor suppressor genes, or decreasing the number of oncogenes within their genome. To understand cancer prevention patterns across species, I developed a bioinformatic pipeline to identify copies of 545 known tumor suppressor genes and oncogenes across 63 species of mammals. I used phylogenetic regressions to test for associations between cancer gene copy numbers and a species’ life history. I found a significant association between cancer gene copies and species’ longevity quotient. Additional paralogues of tumor suppressor genes and oncogenes is not solely dependent on body size, but rather the balance between body size and longevity. Additionally, there is a significance association between life history traits and genes that are both germline and somatic tumor suppressor genes. The bioinformatic pipeline identified large tumor suppressor gene and oncogene copy numbers in the naked mole rat (Heterocephalus glaber), armadillo (Dasypus novemcinctus), and the two-fingered sloth (Choloepus hoffmanni). These results suggest that increased paralogues of tumor suppressor genes and oncogenes are these species’ modes of cancer resistance.
ContributorsSchneider-Utaka, Aika Kunigunda (Author) / Maley, Carlo C (Thesis advisor) / Wilson, Melissa A. (Committee member) / Tollis, Marc (Committee member) / Arizona State University (Publisher)
Created2019