Matching Items (3)
Filtering by

Clear all filters

134629-Thumbnail Image.png
Description
Valley Fever, also known as coccidioidomycosis, is a respiratory disease that affects 10,000 people annually, primarily in Arizona and California. Due to a lack of gene annotation, diagnosis and treatment of Valley Fever is severely limited. In turn, gene annotation efforts are also hampered by incomplete genome sequencing. We intend

Valley Fever, also known as coccidioidomycosis, is a respiratory disease that affects 10,000 people annually, primarily in Arizona and California. Due to a lack of gene annotation, diagnosis and treatment of Valley Fever is severely limited. In turn, gene annotation efforts are also hampered by incomplete genome sequencing. We intend to use proteogenomic analysis to reannotate the Coccidioides posadasii str. Silveira genome from protein-level data. Protein samples extracted from both phases of Silveira were fragmented into peptides, sequenced, and compared against databases of known and predicted proteins sequences, as well as a de novo six-frame translation of the genome. 288 unique peptides were located that did not match a known Silveira annotation, and of those 169 were associated with another Coccidioides strain. Additionally, 17 peptides were found at the boundary of, or outside of, the current gene annotation comprising four distinct clusters. For one of these clusters, we were able to calculate a lower bound and an estimate for the size of the gap between two Silveira contigs using the Coccidioides immitis RS transcript associated with that cluster's peptides \u2014 these predictions were consistent with the current annotation's scaffold structure. Three peptides were associated with an actively translated transposon, and a putative active site was located within an intact LTR retrotransposon. We note that gene annotation is necessarily hindered by the quality and level of detail in prior genome sequencing efforts, and recommend that future studies involving reannotation include additional sequencing as well as gene annotation via proteogenomics or other methods.
ContributorsSherrard, Andrew (Author) / Lake, Douglas (Thesis director) / Grys, Thomas (Committee member) / Mitchell, Natalie (Committee member) / Computing and Informatics Program (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description

Agassiz’s desert tortoise (Gopherus agassizii) is a long-lived species native to the Mojave Desert and is listed as threatened under the US Endangered Species Act. To aid conservation efforts for preserving the genetic diversity of this species, we generated a whole genome reference sequence with an annotation based on dee

Agassiz’s desert tortoise (Gopherus agassizii) is a long-lived species native to the Mojave Desert and is listed as threatened under the US Endangered Species Act. To aid conservation efforts for preserving the genetic diversity of this species, we generated a whole genome reference sequence with an annotation based on deep transcriptome sequences of adult skeletal muscle, lung, brain, and blood. The draft genome assembly for G. agassizii has a scaffold N50 length of 252 kbp and a total length of 2.4 Gbp. Genome annotation reveals 20,172 protein-coding genes in the G. agassizii assembly, and that gene structure is more similar to chicken than other turtles. We provide a series of comparative analyses demonstrating (1) that turtles are among the slowest-evolving genome-enabled reptiles, (2) amino acid changes in genes controlling desert tortoise traits such as shell development, longevity and osmoregulation, and (3) fixed variants across the Gopherus species complex in genes related to desert adaptations, including circadian rhythm and innate immune response. This G. agassizii genome reference and annotation is the first such resource for any tortoise, and will serve as a foundation for future analysis of the genetic basis of adaptations to the desert environment, allow for investigation into genomic factors affecting tortoise health, disease and longevity, and serve as a valuable resource for additional studies in this species complex.

Data Availability: All genomic and transcriptomic sequence files are available from the NIH-NCBI BioProject database (accession numbers PRJNA352725, PRJNA352726, and PRJNA281763). All genome assembly, transcriptome assembly, predicted protein, transcript, genome annotation, repeatmasker, phylogenetic trees, .vcf and GO enrichment files are available on Harvard Dataverse (doi:10.7910/DVN/EH2S9K).

ContributorsTollis, Marc (Author) / DeNardo, Dale F (Author) / Cornelius, John A (Author) / Dolby, Greer A (Author) / Edwards, Taylor (Author) / Henen, Brian T. (Author) / Karl, Alice E. (Author) / Murphy, Robert W. (Author) / Kusumi, Kenro (Author)
Created2017-05-31
Description
Cancer is a disease which can affect all animals across the tree of life. Certain species have undergone natural selection to reduce or prevent cancer. Mechanisms to block cancer may include, among others, a species possessing additional paralogues of tumor suppressor genes, or decreasing the number of oncogenes within their

Cancer is a disease which can affect all animals across the tree of life. Certain species have undergone natural selection to reduce or prevent cancer. Mechanisms to block cancer may include, among others, a species possessing additional paralogues of tumor suppressor genes, or decreasing the number of oncogenes within their genome. To understand cancer prevention patterns across species, I developed a bioinformatic pipeline to identify copies of 545 known tumor suppressor genes and oncogenes across 63 species of mammals. I used phylogenetic regressions to test for associations between cancer gene copy numbers and a species’ life history. I found a significant association between cancer gene copies and species’ longevity quotient. Additional paralogues of tumor suppressor genes and oncogenes is not solely dependent on body size, but rather the balance between body size and longevity. Additionally, there is a significance association between life history traits and genes that are both germline and somatic tumor suppressor genes. The bioinformatic pipeline identified large tumor suppressor gene and oncogene copy numbers in the naked mole rat (Heterocephalus glaber), armadillo (Dasypus novemcinctus), and the two-fingered sloth (Choloepus hoffmanni). These results suggest that increased paralogues of tumor suppressor genes and oncogenes are these species’ modes of cancer resistance.
ContributorsSchneider-Utaka, Aika Kunigunda (Author) / Maley, Carlo C (Thesis advisor) / Wilson, Melissa A. (Committee member) / Tollis, Marc (Committee member) / Arizona State University (Publisher)
Created2019