Matching Items (3)

Filtering by

Clear all filters

The Agassiz’s Desert Tortoise Genome Provides a Resource for the Conservation of a Threatened Species

Description

Agassiz’s desert tortoise (Gopherus agassizii) is a long-lived species native to the Mojave Desert and is listed as threatened under the US Endangered Species Act. To aid conservation efforts for

Agassiz’s desert tortoise (Gopherus agassizii) is a long-lived species native to the Mojave Desert and is listed as threatened under the US Endangered Species Act. To aid conservation efforts for preserving the genetic diversity of this species, we generated a whole genome reference sequence with an annotation based on deep transcriptome sequences of adult skeletal muscle, lung, brain, and blood. The draft genome assembly for G. agassizii has a scaffold N50 length of 252 kbp and a total length of 2.4 Gbp. Genome annotation reveals 20,172 protein-coding genes in the G. agassizii assembly, and that gene structure is more similar to chicken than other turtles. We provide a series of comparative analyses demonstrating (1) that turtles are among the slowest-evolving genome-enabled reptiles, (2) amino acid changes in genes controlling desert tortoise traits such as shell development, longevity and osmoregulation, and (3) fixed variants across the Gopherus species complex in genes related to desert adaptations, including circadian rhythm and innate immune response. This G. agassizii genome reference and annotation is the first such resource for any tortoise, and will serve as a foundation for future analysis of the genetic basis of adaptations to the desert environment, allow for investigation into genomic factors affecting tortoise health, disease and longevity, and serve as a valuable resource for additional studies in this species complex.

Data Availability: All genomic and transcriptomic sequence files are available from the NIH-NCBI BioProject database (accession numbers PRJNA352725, PRJNA352726, and PRJNA281763). All genome assembly, transcriptome assembly, predicted protein, transcript, genome annotation, repeatmasker, phylogenetic trees, .vcf and GO enrichment files are available on Harvard Dataverse (doi:10.7910/DVN/EH2S9K).

Contributors

Agent

Created

Date Created
  • 2017-05-31

154028-Thumbnail Image.png

Caveolin-1: a potential biomarker of aggressive triple-negative breast cancer in African American women

Description

In the U.S., breast cancer (BC) incidences among African American (AA) and CA (CA) women are similar, yet AA women have a significantly higher mortality rate. In addition, AA women

In the U.S., breast cancer (BC) incidences among African American (AA) and CA (CA) women are similar, yet AA women have a significantly higher mortality rate. In addition, AA women often present with tumors at a younger age, with a higher tumor grade/stage and are more likely to be diagnosed with the highly aggressive triple-negative breast cancer (TNBC) subtype. Even within the TNBC subtype, AA women have a worse clinical outcome compared to CA. Although multiple socio-economic and lifestyle factors may contribute to these observed health disparities, it is essential that the underlying biological differences between CA and AA TNBC are identified. In this study, gene expression profiling was performed on archived FFPE samples, obtained from CA and AA women diagnosed with early stage TNBC. Initial analysis revealed a pattern of differential expression in the AA cohort compared to CA. Further molecular characterization results showed that the AA cohort segregated into 3-TNBC molecular subtypes; Basal-like (BL2), Immunomodulatory (IM) and Mesenchymal (M). Gene expression analyses resulted in 190 differentially expressed genes between the AA and CA cohorts. Pathway enrichment analysis demonstrated that differentially expressed genes were over-represented in cytoskeletal remodeling, cell adhesion, tight junctions, and immune response in the AA TNBC -cohort. Furthermore, genes in the Wnt/β-catenin pathway were over-expressed. These results were validated using RT-qPCR on an independent cohort of FFPE samples from AA and CA women with early stage TNBC, and identified Caveolin-1 (CAV1) as being significantly expressed in the AA-TNBC cohort. Furthermore, CAV1 was shown to be highly expressed in a cell line panel of TNBC, in particular, those of the mesenchymal and basal-like molecular subtype. Finally, silencing of CAV1 expression by siRNA resulted in a significant decrease in proliferation in each of the TNBC cell lines. These observations suggest that CAV1 expression may contribute to the more aggressive phenotype observed in AA women diagnosed with TNBC.

Contributors

Agent

Created

Date Created
  • 2015

153977-Thumbnail Image.png

Methods in the assessment of genotype-phenotype correlations in rare childhood disease through orthogonal multi-omics, high-throughput sequencing approaches

Description

Rapid advancements in genomic technologies have increased our understanding of rare human disease. Generation of multiple types of biological data including genetic variation from genome or exome, expression from transcriptome,

Rapid advancements in genomic technologies have increased our understanding of rare human disease. Generation of multiple types of biological data including genetic variation from genome or exome, expression from transcriptome, methylation patterns from epigenome, protein complexity from proteome and metabolite information from metabolome is feasible. "Omics" tools provide comprehensive view into biological mechanisms that impact disease trait and risk. In spite of available data types and ability to collect them simultaneously from patients, researchers still rely on their independent analysis. Combining information from multiple biological data can reduce missing information, increase confidence in single data findings, and provide a more complete view of genotype-phenotype correlations. Although rare disease genetics has been greatly improved by exome sequencing, a substantial portion of clinical patients remain undiagnosed. Multiple frameworks for integrative analysis of genomic and transcriptomic data are presented with focus on identifying functional genetic variations in patients with undiagnosed, rare childhood conditions. Direct quantitation of X inactivation ratio was developed from genomic and transcriptomic data using allele specific expression and segregation analysis to determine magnitude and inheritance mode of X inactivation. This approach was applied in two families revealing non-random X inactivation in female patients. Expression based analysis of X inactivation showed high correlation with standard clinical assay. These findings improved understanding of molecular mechanisms underlying X-linked disorders. In addition multivariate outlier analysis of gene and exon level data from RNA-seq using Mahalanobis distance, and its integration of distance scores with genomic data found genotype-phenotype correlations in variant prioritization process in 25 families. Mahalanobis distance scores revealed variants with large transcriptional impact in patients. In this dataset, frameshift variants were more likely result in outlier expression signatures than other types of functional variants. Integration of outlier estimates with genetic variants corroborated previously identified, presumed causal variants and highlighted new candidate in previously un-diagnosed case. Integrative genomic approaches in easily attainable tissue will facilitate the search for biomarkers that impact disease trait, uncover pharmacogenomics targets, provide novel insight into molecular underpinnings of un-characterized conditions, and help improve analytical approaches that use large datasets.

Contributors

Agent

Created

Date Created
  • 2015