Matching Items (6)

Filtering by

Clear all filters

The Agassiz’s Desert Tortoise Genome Provides a Resource for the Conservation of a Threatened Species

Description

Agassiz’s desert tortoise (Gopherus agassizii) is a long-lived species native to the Mojave Desert and is listed as threatened under the US Endangered Species Act. To aid conservation efforts for

Agassiz’s desert tortoise (Gopherus agassizii) is a long-lived species native to the Mojave Desert and is listed as threatened under the US Endangered Species Act. To aid conservation efforts for preserving the genetic diversity of this species, we generated a whole genome reference sequence with an annotation based on deep transcriptome sequences of adult skeletal muscle, lung, brain, and blood. The draft genome assembly for G. agassizii has a scaffold N50 length of 252 kbp and a total length of 2.4 Gbp. Genome annotation reveals 20,172 protein-coding genes in the G. agassizii assembly, and that gene structure is more similar to chicken than other turtles. We provide a series of comparative analyses demonstrating (1) that turtles are among the slowest-evolving genome-enabled reptiles, (2) amino acid changes in genes controlling desert tortoise traits such as shell development, longevity and osmoregulation, and (3) fixed variants across the Gopherus species complex in genes related to desert adaptations, including circadian rhythm and innate immune response. This G. agassizii genome reference and annotation is the first such resource for any tortoise, and will serve as a foundation for future analysis of the genetic basis of adaptations to the desert environment, allow for investigation into genomic factors affecting tortoise health, disease and longevity, and serve as a valuable resource for additional studies in this species complex.

Data Availability: All genomic and transcriptomic sequence files are available from the NIH-NCBI BioProject database (accession numbers PRJNA352725, PRJNA352726, and PRJNA281763). All genome assembly, transcriptome assembly, predicted protein, transcript, genome annotation, repeatmasker, phylogenetic trees, .vcf and GO enrichment files are available on Harvard Dataverse (doi:10.7910/DVN/EH2S9K).

Contributors

Agent

Created

Date Created
  • 2017-05-31

152394-Thumbnail Image.png

The role of PARAXIS as a mediator of epithelial-mesenchymal transitions during the development of the vertebrate musculoskeletal system

Description

The development of the vertebrate musculoskeletal system is a highly dynamic process, requiring tight control of the specification and patterning of myogenic, chondrogenic and tenogenic cell types. Development of the

The development of the vertebrate musculoskeletal system is a highly dynamic process, requiring tight control of the specification and patterning of myogenic, chondrogenic and tenogenic cell types. Development of the diverse musculoskeletal lineages from a common embryonic origin in the paraxial mesoderm indicates the presence of a regulatory network of transcription factors that direct lineage decisions. The basic helix-loop-helix transcription factor, PARAXIS, is expressed in the paraxial mesoderm during vertebrate somitogenesis, where it has been shown to play a critical role in the mesenchymal-to-epithelial transition associated with somitogenesis, and the development of the hypaxial skeletal musculature and axial skeleton. In an effort to elucidate the underlying genetic mechanism by which PARAXIS regulates the musculoskeletal system, I performed a microarray-based, genome-wide analysis comparing transcription levels in the somites of Paraxis-/- and Paraxis+/+ embryos. This study revealed targets of PARAXIS involved in multiple aspects of mesenchymal-to-epithelial transition, including Fap and Dmrt2, which modulate cell-extracellular matrix adhesion. Additionally, in the epaxial dermomyotome, PARAXIS activates the expression of the integrin subunits a4 and a6, which bind fibronectin and laminin, respectively, and help organize the patterning of trunk skeletal muscle. Finally, PARAXIS activates the expression of genes required for the epithelial-to-mesenchymal transition and migration of hypaxial myoblasts into the limb, including Lbx1 and Met. Together, these data point to a role for PARAXIS in the morphogenetic control of musculoskeletal patterning.

Contributors

Agent

Created

Date Created
  • 2013

150864-Thumbnail Image.png

A novel role for lunatic fringe in the development of epaxial musculature

Description

Skeletal muscles arise from the myotome compartment of the somites that form during vertebrate embryonic development. Somites are transient structures serve as the anlagen for the axial skeleton, skeletal muscle,

Skeletal muscles arise from the myotome compartment of the somites that form during vertebrate embryonic development. Somites are transient structures serve as the anlagen for the axial skeleton, skeletal muscle, tendons, and dermis, as well as imposing the metameric patterning of the axial musculoskeletal system, peripheral nerves, and vasculature. Classic studies have described the role of Notch, Wnt, and FGF signaling pathways in controlling somite formation and muscle formation. However, little is known about the transformation of myotome compartments into identifiable post-natal muscle groups. Using a mouse model, I have undertaken an evaluation of morphological events, including hypertrophy and hyperplasia, related to the formation of several muscles positioned along the dorsal surface of the vertebrae and ribs. Lunatic fringe (Lfng) deficient embryos and neonates were also examined to further understand the role of the Notch pathway in these processes as it is a modulator of the Notch receptor and plays an important role in defining somite borders and anterior-posterior patterning in many vertebrates. Lunatic fringe deficient embryos showed defects in muscle fiber hyperplasia and hypertrophy in the iliocostalis and longissimus muscles of the erector spinae group. This novel data suggests an additional role for Lfng and the Notch signaling pathway in embryonic and fetal muscle development.

Contributors

Agent

Created

Date Created
  • 2012

Transcriptomic and Cellular Studies of Tail Regeneration in Saurian Reptiles

Description

Traumatic injury to the central nervous or musculoskeletal system in traditional amniote models, such as mouse and chicken, is permanent with long-term physiological and functional effects. However, among amniotes, the

Traumatic injury to the central nervous or musculoskeletal system in traditional amniote models, such as mouse and chicken, is permanent with long-term physiological and functional effects. However, among amniotes, the ability to regrow complex, multi-tissue structures is unique to non-avian reptiles. Structural regeneration is extensively studied in lizards, with most species able to regrow a functional tail. The lizard regenerated tail includes the spinal cord, cartilage, de novo muscle, vasculature, and skin, and unlike mammals, these tissues can be replaced in lizards as adults. These studies focus on the events that occur before and after the tail regrowth phase, identifying conserved mechanisms that enable functional tail regeneration in the green anole lizard, Anolis carolinensis. An examination of coordinated interactions between peripheral nerves, Schwann cells, and skeletal muscle reveal that reformation of the lizard neuromuscular system is dependent upon developmental programs as well as those unique to the adult during late stages of regeneration. On the other hand, transcriptomic analysis of the early injury response identified many immunoregulatory genes that may be essential for inhibiting fibrosis and initiating regenerative programs. Lastly, an anatomical and histological study of regrown alligator tails reveal that regenerative capacity varies between different reptile groups, providing comparative opportunities within amniotes and across vertebrates. In order to identify mechanisms that limit regeneration, these cross-species analyses will be critical. Taken together, these studies serve as a foundation for future experimental work that will reveal the interplay between reparative and regenerative mechanisms in adult amniotes with translational implications for medical therapies.

Contributors

Agent

Created

Date Created
  • 2020

153689-Thumbnail Image.png

Insights towards developing regenerative therapies: the lizard, Anolis carolinensis, as a genetic model for regeneration in amniotes

Description

Damage to the central nervous system due to spinal cord or traumatic brain injury, as well as degenerative musculoskeletal disorders such as arthritis, drastically impact the quality of life. Regeneration

Damage to the central nervous system due to spinal cord or traumatic brain injury, as well as degenerative musculoskeletal disorders such as arthritis, drastically impact the quality of life. Regeneration of complex structures is quite limited in mammals, though other vertebrates possess this ability. Lizards are the most closely related organism to humans that can regenerate de novo skeletal muscle, hyaline cartilage, spinal cord, vasculature, and skin. Progress in studying the cellular and molecular mechanisms of lizard regeneration has previously been limited by a lack of genomic resources. Building on the release of the genome of the green anole, Anolis carolinensis, we developed a second generation, robust RNA-Seq-based genome annotation, and performed the first transcriptomic analysis of tail regeneration in this species. In order to investigate gene expression in regenerating tissue, we performed whole transcriptome and microRNA transcriptome analysis of regenerating tail tip and base and associated tissues, identifying key genetic targets in the regenerative process. These studies have identified components of a genetic program for regeneration in the lizard that includes both developmental and adult repair mechanisms shared with mammals, indicating value in the translation of these findings to future regenerative therapies.

Contributors

Agent

Created

Date Created
  • 2015

Advancing the lizard, Anolis carolinensis, as a model system for genomic studies of evolution, development and regeneration

Description

Well-established model systems exist in four out of the seven major classes of vertebrates. These include the mouse, chicken, frog and zebrafish. Noticeably missing from this list is a reptilian

Well-established model systems exist in four out of the seven major classes of vertebrates. These include the mouse, chicken, frog and zebrafish. Noticeably missing from this list is a reptilian model organism for comparative studies between the vertebrates and for studies of biological processes unique to reptiles. To help fill in this gap the green anole lizard, Anolis carolinensis, is being adapted as a model organism. Despite the recent release of the complete genomic sequence of the A. carolinensis, the lizard lacks some resources to aid researchers in their studies. Particularly, the lack of transcriptomic resources for lizard has made it difficult to identify genes complete with alternative splice forms and untranslated regions (UTRs). As part of this work the genome annotation for A. carolinensis was improved through next generation sequencing and assembly of the transcriptomes from 14 different adult and embryonic tissues. This revised annotation of the lizard will improve comparative studies between vertebrates, as well as studies within A. carolinensis itself, by providing more accurate gene models, which provide the bases for molecular studies. To demonstrate the utility of the improved annotations and reptilian model organism, the developmental process of somitogenesis in the lizard was analyzed and compared with other vertebrates. This study identified several key features both divergent and convergent between the vertebrates, which was not previously known before analysis of a reptilian model organism. The improved genome annotations have also allowed for molecular studies of tail regeneration in the lizard. With the annotation of 3' UTR sequences and next generation sequencing, it is now possible to do expressional studies of miRNA and predict their mRNA target transcripts at genomic scale. Through next generation small RNA sequencing and subsequent analysis, several differentially expressed miRNAs were identified in the regenerating tail, suggesting miRNA may play a key role in regulating this process in lizards. Through miRNA target prediction several key biological pathways were identified as potentially under the regulation of miRNAs during tail regeneration. In total, this work has both helped advance A. carolinensis as model system and displayed the utility of a reptilian model system.

Contributors

Agent

Created

Date Created
  • 2012