Matching Items (4)
Filtering by

Clear all filters

153959-Thumbnail Image.png
Description
Sexual and social signals have long been thought to play an important role in speciation and diversity; hence, investigations of intraspecific communication may lead to important insights regarding key processes of evolution. Though we have learned much about the control, function, and evolution of animal communication by studying several very

Sexual and social signals have long been thought to play an important role in speciation and diversity; hence, investigations of intraspecific communication may lead to important insights regarding key processes of evolution. Though we have learned much about the control, function, and evolution of animal communication by studying several very common signal types, investigating rare classes of signals may provide new information about how and why animals communicate. My dissertation research focused on rapid physiological color change, a rare signal-type used by relatively few taxa. To answer longstanding questions about this rare class of signals, I employed novel methods to measure rapid color change signals of male veiled chameleons Chamaeleo calyptratus in real-time as seen by the intended conspecific receivers, as well as the associated behaviors of signalers and receivers. In the context of agonistic male-male interactions, I found that the brightness achieved by individual males and the speed of color change were the best predictors of aggression and fighting ability. Conversely, I found that rapid skin darkening serves as a signal of submission for male chameleons, reducing aggression from winners when displayed by losers. Additionally, my research revealed that the timing of maximum skin brightness and speed of brightening were the best predictors of maximum bite force and circulating testosterone levels, respectively. Together, these results indicated that different aspects of color change can communicate information about contest strategy, physiology, and performance ability. Lastly, when I experimentally manipulated the external appearance of chameleons, I found that "dishonestly" signaling individuals (i.e. those whose behavior did not match their manipulated color) received higher aggression from unpainted opponents. The increased aggression received by dishonest signalers suggests that social costs play an important role in maintaining the honesty of rapid color change signals in veiled chameleons. Though the color change abilities of chameleons have interested humans since the time of Aristotle, little was previously known about the signal content of such changes. Documenting the behavioral contexts and information content of these signals has provided an important first step in understanding the current function, underlying control mechanisms, and evolutionary origins of this rare signal type.
ContributorsLigon, Russell (Author) / McGraw, Kevin J. (Committee member) / DeNardo, Dale F (Committee member) / Karsten, Kristopher B (Committee member) / Rutowski, Ronald L (Committee member) / Deviche, Pierre (Committee member) / Arizona State University (Publisher)
Created2015
Description

Agassiz’s desert tortoise (Gopherus agassizii) is a long-lived species native to the Mojave Desert and is listed as threatened under the US Endangered Species Act. To aid conservation efforts for preserving the genetic diversity of this species, we generated a whole genome reference sequence with an annotation based on dee

Agassiz’s desert tortoise (Gopherus agassizii) is a long-lived species native to the Mojave Desert and is listed as threatened under the US Endangered Species Act. To aid conservation efforts for preserving the genetic diversity of this species, we generated a whole genome reference sequence with an annotation based on deep transcriptome sequences of adult skeletal muscle, lung, brain, and blood. The draft genome assembly for G. agassizii has a scaffold N50 length of 252 kbp and a total length of 2.4 Gbp. Genome annotation reveals 20,172 protein-coding genes in the G. agassizii assembly, and that gene structure is more similar to chicken than other turtles. We provide a series of comparative analyses demonstrating (1) that turtles are among the slowest-evolving genome-enabled reptiles, (2) amino acid changes in genes controlling desert tortoise traits such as shell development, longevity and osmoregulation, and (3) fixed variants across the Gopherus species complex in genes related to desert adaptations, including circadian rhythm and innate immune response. This G. agassizii genome reference and annotation is the first such resource for any tortoise, and will serve as a foundation for future analysis of the genetic basis of adaptations to the desert environment, allow for investigation into genomic factors affecting tortoise health, disease and longevity, and serve as a valuable resource for additional studies in this species complex.

Data Availability: All genomic and transcriptomic sequence files are available from the NIH-NCBI BioProject database (accession numbers PRJNA352725, PRJNA352726, and PRJNA281763). All genome assembly, transcriptome assembly, predicted protein, transcript, genome annotation, repeatmasker, phylogenetic trees, .vcf and GO enrichment files are available on Harvard Dataverse (doi:10.7910/DVN/EH2S9K).

ContributorsTollis, Marc (Author) / DeNardo, Dale F (Author) / Cornelius, John A (Author) / Dolby, Greer A (Author) / Edwards, Taylor (Author) / Henen, Brian T. (Author) / Karl, Alice E. (Author) / Murphy, Robert W. (Author) / Kusumi, Kenro (Author)
Created2017-05-31
187732-Thumbnail Image.png
Description
Environmental variation impacts physiological performance in animals. As a result, many animals thermoregulate to buffer unfavorable thermal variation in their environments. Animals are only expected to thermoregulate when the benefits outweigh the costs, although both are difficult to quantify. I examined how habitats and organismal factors shape thermoregulation and physiological

Environmental variation impacts physiological performance in animals. As a result, many animals thermoregulate to buffer unfavorable thermal variation in their environments. Animals are only expected to thermoregulate when the benefits outweigh the costs, although both are difficult to quantify. I examined how habitats and organismal factors shape thermoregulation and physiological performance in lizards. I found that habitat structure shapes opportunities for thermoregulation in two species of Anolis lizards. In dense tropical rainforests where there is low habitat heterogeneity, the range of available microclimates is narrow. Consequently, lizards in the tropics tend to be thermal specialists – performing best over a narrow range of temperatures. This phenotype should lead to decreased performance under climate warming. I then investigated the relationship between body condition, feeding, and thermoregulation in Yarrow’s spiny lizards (Sceloporus jarrovii) using lab- and field-based experiments. In the lab experiment, when lizards were observed in an artificial thermal gradient, neither body condition nor feeding status influenced the mean body temperature. When simulated costs of thermoregulation were higher, all lizards reduced thermoregulation similarly. However, when lizards were observed in an outdoor thermal arena, individuals with lower body condition decreased thermoregulatory performance, resulting in a lower mean body temperature. Animals with poor body condition may face greater risk of predation when thermoregulating. Finally, I conducted a comparative analysis to quantify relationships between the potential for thermoregulatory performance and empirical measures of productivity (i.e., growth rates and reproductive output) in lizard populations. A model that assumes lizards are active whenever preferred temperatures were available overestimated the duration that a lizard could maintain a preferred body temperature. As such, studies equating predicted thermoregulatory performance with fitness in the context of climate change should be interpreted cautiously. Overall, environmental factors and organismal traits shape the thermoregulatory behavior of animals, ultimately affecting their physiological performance and fitness. Biologists should consider these relationships when modeling the impacts of climate change on future performance.
ContributorsNeel, Lauren (Author) / Angilletta, Michael J (Thesis advisor) / Bateman, Heather L (Committee member) / DeNardo, Dale F (Committee member) / Sears, Michael W (Committee member) / Arizona State University (Publisher)
Created2023
161911-Thumbnail Image.png
Description
Though the connection between terrestrial riparian consumers and the adjacent aquatic food web has been well-studied in a variety of systems, gaps with respect to several habitats remain. The Colorado River Basin represents many of these untested habitat characteristics: it contains large, controlled rivers in an arid environment that are

Though the connection between terrestrial riparian consumers and the adjacent aquatic food web has been well-studied in a variety of systems, gaps with respect to several habitats remain. The Colorado River Basin represents many of these untested habitat characteristics: it contains large, controlled rivers in an arid environment that are often canyon-bound. These characteristics, however, are not unique to the Colorado River Basin. Dams and arid lands are becoming increasingly common around the world, stressing the importance of understanding the function of riparian areas within the Colorado River Basin and basins like it. Stable isotopes, including the more recent application of deuterium, can be used to elucidate trophic linkages between rivers and their riparia. Though dams may harm aquatic insect populations, it is possible that they also make aquatic insects a stable, constant food source to the riparian biological community. This dissertation demonstrates that aquatic emergent insects are a reliable, and therefore important, food source for arid land riparian consumers along regulated rivers. However, the importance of aquatic emergent insects to riparian consumers may vary across sites, even within the same river basin. To explore this variation, the diet of a common riparian lizard species Urosaurus ornatus (Ornate Tree Lizard) can be used as an indicator of cross-ecosystem connectivity. This dissertation demonstrates linkages between two differing river segments and U. ornatus, showcasing its ability as an indicator of connectivity across a diversity of systems. Within the Colorado River Basin, the Grand Canyon provides an opportunity to study a variety of riparian consumers across a gradient of habitat parameters and dam effects. This dissertation demonstrates the manifold connections between large, regulated rivers and arid riparian consumers, ranging from lizards, to bats, to, for the first time, mice. Monsoons have differing effects on river-riparian communities in this basin, potentially related to intact tributary confluences. Lastly, this dissertation demonstrates that hydropeaking reduces river-riparia connectivity by reducing aquatic insect emergence. This dissertation seeks to improve understanding of the linkages between river and their riparia to aid in the management of arid riparian areas affected by dams worldwide.
ContributorsLupoli, Christina Alexandra (Author) / Sabo, John L (Thesis advisor) / DeNardo, Dale F (Committee member) / Kennedy, Theodore A (Committee member) / Muehlbauer, Jeffrey D (Committee member) / Yackulic, Charles B (Committee member) / Arizona State University (Publisher)
Created2021