Matching Items (13)
Filtering by

Clear all filters

157409-Thumbnail Image.png
Description
Trichloroethene (TCE) is a ubiquitous soil and groundwater contaminant. The most common bioremediation approach for TCE relies on the process of reductive dechlorination by Dehalococcoides mccartyi. D. mccartyi use TCE, dichloroethene, and vinyl chloride as electron acceptors and hydrogen as an electron donor. At contaminated sites, reductive dechlorination is typically

Trichloroethene (TCE) is a ubiquitous soil and groundwater contaminant. The most common bioremediation approach for TCE relies on the process of reductive dechlorination by Dehalococcoides mccartyi. D. mccartyi use TCE, dichloroethene, and vinyl chloride as electron acceptors and hydrogen as an electron donor. At contaminated sites, reductive dechlorination is typically promoted by adding a fermentable substrate, which is broken down to short chain fatty acids, simple alcohols, and hydrogen. This study explored microbial chain elongation (MCE), instead of fermentation, to promote TCE reductive dechlorination. In MCE, microbes use simple substrates (e.g., acetate, ethanol) to build medium chain fatty acids and also produce hydrogen during this process. Soil microcosm using TCE and acetate and ethanol as MCE substrates were established under anaerobic conditions. In soil microcosms with synthetic groundwater and natural groundwater, ethene was the main product from TCE reductive dechlorination and butyrate and hydrogen were the main products from MCE. Transfer microcosms using TCE and either acetate and ethanol, ethanol, or acetate were also established. The transfers with TCE and ethanol showed the faster rates of reductive dechlorination and produced more elongated products (i.e., hexanoate). The microbial groups enriched in the soil microcosms likely responsible for chain elongation were most similar to Clostridium genus. These investigations showed the potential for synergistic microbial chain elongation and reductive dechlorination of chlorinated ethenes.
ContributorsRobles, Aide (Author) / Delgado, Anca G. (Thesis advisor) / Torres, Cesar I. (Committee member) / van Paassen, Leon (Committee member) / Arizona State University (Publisher)
Created2019
156559-Thumbnail Image.png
Description
This research explores microbial chain elongation as a pathway for production of complex organic compounds in soils with implication for the carbon cycle. In chain elongation, simple substrates such as ethanol and short chain carboxylates such as acetate can be converted to longer carbon chain carboxylates under anaerobic conditions through

This research explores microbial chain elongation as a pathway for production of complex organic compounds in soils with implication for the carbon cycle. In chain elongation, simple substrates such as ethanol and short chain carboxylates such as acetate can be converted to longer carbon chain carboxylates under anaerobic conditions through cyclic, reverse β oxidation. This pathway elongates the carboxylate by two carbons. The chain elongation process is overall thermodynamically feasible, and microorganisms gain energy through this process. There have been limited insights into the versatility of chain elongating substrates, understanding the chain elongating microbial community, and its importance in sequestering carbon in the soils.

We used ethanol, methanol, butanol, and hydrogen as electron donors and acetate and propionate as electron acceptors to test the occurrence of microbial chain elongation in four soils with different physicochemical properties and microbial communities. Common chain elongation products were the even numbered chains butyrate, caproate, and butanol, the odd numbered carboxylates valerate and heptanoate, along with molecular hydrogen. At a near neutral pH and mesophilic temperature, we observed a stable and sustained production of longer fatty acids along with hydrogen. Microbial community analysis show phylotypes from families such as Clostridiaceae, Bacillaceae, and Ruminococcaceae in all tested conditions. Through chain elongation, the products formed are less biodegradable. They may undergo transformations and end up as organic carbon, decreasing the greenhouse gas emissions, thus, making this process important to study.
ContributorsJoshi, Sayalee (Author) / Delgado, Anca G (Thesis advisor) / Torres, César I (Committee member) / van Paassen, Leon (Committee member) / Arizona State University (Publisher)
Created2018
156657-Thumbnail Image.png
Description
Laterally-loaded short rigid drilled shaft foundations are the primary foundation used within the electric power transmission line industry. Performance of these laterally loaded foundations is dependent on modulus of the subsurface, which is directly measured by the Pressuremeter (PMT). The PMT test provides the lateral shear modulus at intermediate strains,

Laterally-loaded short rigid drilled shaft foundations are the primary foundation used within the electric power transmission line industry. Performance of these laterally loaded foundations is dependent on modulus of the subsurface, which is directly measured by the Pressuremeter (PMT). The PMT test provides the lateral shear modulus at intermediate strains, an equivalent elastic modulus for lateral loading, which mimics the reaction of transmission line foundations within the elastic range of motion. The PMT test, however, is expensive to conduct and rarely performed. Correlations of PMT to blow counts and other index properties have been developed but these correlations have high variability and may result in unconservative foundation design. Variability in correlations is due, in part, because difference of the direction of the applied load and strain level between the correlated properties and the PMT. The geophysical shear wave velocity (S-wave velocity) as measured through refraction microtremor (ReMi) methods can be used as a measure of the small strain, shear modulus in the lateral direction. In theory, the intermediate strain modulus of the PMT is proportional to the small strain modulus of S-wave velocity. A correlation between intermediate strain and low strain moduli is developed here, based on geophysical surveys conducted at fourteen previous PMT testing locations throughout the Sonoran Desert of central Arizona. Additionally, seasonal variability in S-wave velocity of unsaturated soils is explored and impacts are identified for the use of the PMT correlation in transmission line foundation design.
ContributorsEvans, Ashley Elizabeth (Author) / Houston, Sandra (Thesis advisor) / Zapata, Claudia (Thesis advisor) / van Paassen, Leon (Committee member) / Arizona State University (Publisher)
Created2018
168277-Thumbnail Image.png
Description
In this project, the potential of ferrous iron precipitation as an alternative for ground improvement applications is investigated. This study analyzes the potential of naturally occurring iron oxidation, which uses Fe2+ as an electron donor to produce Fe3+ precipitate. The goal of this study was to stimulate or accelerate the

In this project, the potential of ferrous iron precipitation as an alternative for ground improvement applications is investigated. This study analyzes the potential of naturally occurring iron oxidation, which uses Fe2+ as an electron donor to produce Fe3+ precipitate. The goal of this study was to stimulate or accelerate the naturally occurring iron oxidation and precipitation process, to form a ferruginous crust in the subsurface, that would reduce hydraulic conductivity or increase soil strength. Iron precipitation can occur through aerobic or anaerobic iron oxidizers. Initial experimental test results in falcon tubes and a literature review showed that to obtain significant oxidation of ferrous iron and consequent precipitation of iron minerals required a buffer to prevent acidification. Experimental studies in which aerobic and anaerobic iron precipitation is stimulated in sand columns under various boundary conditions also leads to an optimization of conditions for mineralization. Mineralized zones are evaluated via permeability loss tests, extent of iron oxidized and characterization tests which show that the crust has the most concentration of precipitated iron, which can be used in targeting pollution mitigation, erosion control, etc. The results show a significant loss of permeability- by a factor of two, in high concentration of iron with a balanced buffer control. In this study, the knowledge on ground stabilization by studying the naturally occurring mechanism of iron precipitation, leading to possible industrially relevant geotechnical applications are successfully investigated.
ContributorsKanawade, Sahil (Author) / Torres, Cesar (Thesis advisor) / van Paassen, Leon (Thesis advisor) / Nielsen, David (Committee member) / Arizona State University (Publisher)
Created2021
Description
Enzyme-induced carbonate precipitation (EICP) is a biogeotechnical soil improvement method that involves the precipitation of calcium carbonate via hydrolysis of urea (ureolysis) catalyzed by free urease enzyme in a calcium chloride solution. When this reaction takes place in the pore space of a sand, the precipitated calcium carbonate may bind

Enzyme-induced carbonate precipitation (EICP) is a biogeotechnical soil improvement method that involves the precipitation of calcium carbonate via hydrolysis of urea (ureolysis) catalyzed by free urease enzyme in a calcium chloride solution. When this reaction takes place in the pore space of a sand, the precipitated calcium carbonate may bind soil grains together, thereby improving strength. Three studies on EICP are presented in this dissertation. In the first study, chemical equilibrium modeling via PHREEQC is used to develop a method for evaluating urease activity from electrical conductivity (EC) measurements in a closed reactor containing urea and urease. It is shown that a commonly used correlation to estimate urease activity from EC measurements overestimates the initial urea hydrolysis rate (thereby overpredicting the urease activity as well). In the second study, the crystal structure and mechanical properties of calcium carbonate minerals formed by EICP are studied. It is shown that a “modified” precipitate synthesized by the inclusion of nonfat dry milk in the EICP solution is more ductile than a “baseline” precipitate synthesized from an EICP solution without nonfat milk. Additionally, in sands biocemented using the modified EICP solution, precipitation occurs preferentially at the grain contacts. This may contribute to relatively high unconfined compressive strengths at low carbonate contents in some EICP-treated sands. The third study discusses the role of some sand characteristics on the strength following modified EICP treatment. Three batches of Ottawa 20-30 sand from different sources were treated identically using the modified EICP solution. Subsequent testing showed large differences in their unconfined compressive strengths. It is shown that this variation in unconfined compressive strength is due to differences in the surface microtexture and surface mineralogy of the sands.The fundamental studies presented in this dissertation provide a deeper understanding of some aspects of the EICP process.
ContributorsLakshminarayanan, Vinaykrishnan (Author) / Kavazanjian, Jr., Edward (Thesis advisor) / van Paassen, Leon (Committee member) / Khodadadi Tirkolaei, Hamed (Committee member) / Arizona State University (Publisher)
Created2022
171577-Thumbnail Image.png
Description
Trichloroethene (TCE) and hexavalent chromium (Cr (VI)) are ubiquitous subsurface contaminants affecting the water quality and threatening human health. Microorganisms capable of TCE and Cr (VI) reductions can be explored for bioremediation at contaminated sites. The goal of my dissertation research was to address challenges that decrease the

Trichloroethene (TCE) and hexavalent chromium (Cr (VI)) are ubiquitous subsurface contaminants affecting the water quality and threatening human health. Microorganisms capable of TCE and Cr (VI) reductions can be explored for bioremediation at contaminated sites. The goal of my dissertation research was to address challenges that decrease the efficiency of bioremediation in the subsurface. Specifically, I investigated strategies to (i) promote improve microbial reductive dechlorination extent through the addition of Fe0 and (ii) Cr (VI) bio-reduction through enrichment of specialized microbial consortia. Fe0 can enhance microbial TCE reduction by inducing anoxic conditions and generating H2 (electron donor). I first evaluated the effect of Fe0 on microbial reduction of TCE (with ClO4– as co-contaminant) using semi-batch soil microcosms. Results showed that high concentration of Fe0 expected during in situ remediation inhibited microbial TCE and ClO4– reduction when added together with Dehalococcoides mccartyi-containing cultures. A low concentration of aged Fe0 enhanced microbial TCE dechlorination to ethene and supported complete microbial ClO4– reduction. I then evaluated a decoupled Fe0 and biostimulation/bioaugmentation treatment approach using soil packed columns with continuous flow of groundwater. I demonstrated that microbial TCE reductive dechlorination to ethene can be benefitted by Fe0 abiotic reactions, when biostimulation and bioaugmentation are performed downstream of Fe0 addition. Furthermore, I showed that ethene production can be sustained in the presence of aerobic groundwater (after Fe0 exhaustion) by the addition of organic substrates. I hypothesized that some lessons learned from TCE Bioremediation can be applied also for other pollutants that can benefit from anaerobic reductions, like Cr (VI). Bioremediation of Cr (VI) has historically relied on biostimulation of native microbial communities, partially due to the lack of knowledge of the benefits of adding enriched consortia of specialized microorganisms (bioaugmentation). To determine the merits of a specialized consortium on bio-reduction of Cr (VI), I first enriched a culture on lactate and Cr (VI). The culture had high abundance of putative Morganella species and showed rapid and sustained Cr (VI) bio-reduction compared to a subculture grown with lactate only (without Morganella). Overall, this dissertation work documents possible strategies for synergistic abiotic and biotic chlorinated ethenes reduction, and highlights that specialized consortia may benefit Cr (VI) bio-reduction.
ContributorsMohana Rangan, Srivatsan (Author) / Krajmalnik-Brown, Rosa (Thesis advisor) / Delgado, Anca G (Thesis advisor) / Torres, César I (Committee member) / van Paassen, Leon (Committee member) / Arizona State University (Publisher)
Created2022
157789-Thumbnail Image.png
Description
The potential of using bio-geo-chemical processes for applications in geotechnical engineering has been widely explored in order to overcome the limitation of traditional ground improvement techniques. Biomineralization via urea hydrolysis, referred to as Microbial or Enzymatic Induced Carbonate Precipitation (MICP/EICP), has been shown to increase soil strength by stimulating precipitation

The potential of using bio-geo-chemical processes for applications in geotechnical engineering has been widely explored in order to overcome the limitation of traditional ground improvement techniques. Biomineralization via urea hydrolysis, referred to as Microbial or Enzymatic Induced Carbonate Precipitation (MICP/EICP), has been shown to increase soil strength by stimulating precipitation of calcium carbonate minerals, bonding soil particles and filling the pores. Microbial Induced Desaturation and Precipitation (MIDP) via denitrification has also been studied for its potential to stabilize soils through mineral precipitation, but also through production of biogas, which can mitigate earthquake induced liquefaction by desaturation of the soil. Empirical relationships have been established, which relate the amount of products of these biochemical processes to the engineering properties of treated soils. However, these engineering properties may vary significantly depending on the biomineral and biogas formation mechanism and distribution patterns at pore-scale. This research focused on the pore-scale characterization of biomineral and biogas formations in porous media.

The pore-scale characteristics of calcium carbonate precipitation via EICP and biogenic gas formation via MIDP were explored by visual observation in a transparent porous media using a microfluidic chip. For this purpose, an imaging system was designed and image processing algorithms were developed to analyze the experimental images and detect the nucleation and growth of precipitated minerals and formation and migration mechanisms of gas bubbles within the microfluidic chip. Statistical analysis was performed based on the processed images to assess the evolution of biomineral size distribution, the number of precipitated minerals and the porosity reduction in time. The resulting images from the biomineralization study were used in a numerical simulation to investigate the relation between the mineral distribution, porosity-permeability relationships and process efficiency. By comparing biogenic gas production with abiotic gas production experiments, it was found that the gas formation significantly affects the gas distribution and resulting degree of saturation. The experimental results and image analysis provide insight in the kinetics of the precipitation and gas formation processes and their resulting distribution and related engineering properties.
ContributorsKim, Daehyun (Author) / van Paassen, Leon (Thesis advisor) / Kavazanjian, Edward (Committee member) / Zapata, Claudia (Committee member) / Mahabadi, Nariman (Committee member) / Tao, Junliang (Committee member) / Jang, Jaewon (Committee member) / Arizona State University (Publisher)
Created2019
Description
The Atlantic razor clam burrows underground with effectiveness and efficiency by coordinating shape changings of its shell and foot. Inspired by the burrowing strategy of razor clams, this research is dedicated to developing a self-burrowing technology for active underground explorations by investigating the burrowing mechanism of razor clams from the

The Atlantic razor clam burrows underground with effectiveness and efficiency by coordinating shape changings of its shell and foot. Inspired by the burrowing strategy of razor clams, this research is dedicated to developing a self-burrowing technology for active underground explorations by investigating the burrowing mechanism of razor clams from the perspective of soil mechanics. In this study, the razor clam was observed to burrow out of sands simply by extending and contracting its foot periodically. This upward burrowing gait is much simpler than its downward burrowing gait, which also involves opening/closing of the shell and dilation of the foot. The upward burrowing gait inspired the design of a self-burrowing-out soft robot, which drives itself out of sands naturally by extension and contraction through pneumatic inflation and deflation. A simplified analytical model was then proposed and explained the upward burrowing behavior of the robot and razor clams as the asymmetric nature of soil resistances applied on both ends due to the intrinsic stress gradient of sand deposits. To burrow downward, additional symmetry-breaking features are needed for the robot to increase the resistance in the upward burrowing direction and to decrease the resistance in the downward burrowing direction. A potential approach is by incorporating friction anisotropy, which was then experimentally demonstrated to affect the upward burrowing of the soft robot. The downward burrowing gait of razor clams provides another inspiration. By exploring the analogies between the downward burrowing gait and in-situ soil characterization methods, a clam-inspired shape-changing penetrator was designed and penetrated dry granular materials both numerically and experimentally. Results demonstrated that the shell opening not only contributes to forming a penetration anchor by compressing the surrounding particles, but also reduces the foot penetration resistance temporally by creating a stress arch above the foot; the shell closing facilitates the downward burrowing by reducing the friction resistance to the subsequent shell retraction. Findings from this research shed lights on the future design of a clam-inspired self-burrowing robot.
ContributorsHuang, Sichuan (Author) / Tao, Junliang (Thesis advisor) / Kavazanjian, Edward (Committee member) / Marvi, Hamidreza (Committee member) / Zapata, Claudia (Committee member) / van Paassen, Leon (Committee member) / Arizona State University (Publisher)
Created2020
161253-Thumbnail Image.png
Description
Expansive soils pose considerable geotechnical and structural challenges all over the world. Many cities, towns, transport systems, and structures are built on expansive soils. This study evaluates stabilization of expansive soils using silicate solution extracted from rice husk taking advantage of an agricultural material waste. Rice husk ash production was

Expansive soils pose considerable geotechnical and structural challenges all over the world. Many cities, towns, transport systems, and structures are built on expansive soils. This study evaluates stabilization of expansive soils using silicate solution extracted from rice husk taking advantage of an agricultural material waste. Rice husk ash production was optimized considering several factors including rinsing solution, rinsing temperature, burning time, and burning temperature. Results indicated that washing the rice husk with HCl (1M) produced an ash with surface area of 320 m2/g and 97% of silicon oxide. Two local soils were treated with sodium silicate solution, silica gel at pH 1.5, and silica gel at pH 4 to evaluate its mechanical properties at curing times of 1 day, 7 days, and 14 days. Results indicated that sodium silicate solution reduced the one-dimensional swell by 48% for Soil A, however, swell for soil B remained about the same. Silica gel at pH 1.5 reduced the one-dimensional swell by 67% for soil A and by 35% for soil B. Silica gel at pH 4 did also reduce the free swell by 40% for soil A and by 35% for soil B. Results also indicated that the swell pressures for all treated soils increased significantly compared to untreated soils. Soils treated with sodium silicate solution showed irregular compaction curves. Silica gel-treated soils showed a reduction in the maximum dry unit weight for both soils but optimum water content decreased for soil A and increased for soil B. Atterberg limits were also reduced for sodium silicate and silica gels-treated soils. Swelling index for bentonite showed a reduction by 53% for all treated bentonites. Soil-water characteristics curves (SWCC) for sodium silicate-treated soils remined almost the same as untreated soils. However, silica gels-treated soils retain more water. Surface area (SSA) decreased for sodium silicate-treated soil but increased for all silica gels-treated soils. It was concluded that curing times did not show additional improvement in most of the experiments, but the results remained about the same as 1-day treatment. The study demonstrated that silicate solution is promising and sustainable technique for stabilization of expansive soils.
Contributorsalharbi, hani (Author) / Zapata, Claudia (Thesis advisor) / Kavazanjian, Edward (Committee member) / van Paassen, Leon (Committee member) / Khodadaditirkolaei, Hamed (Committee member) / Arizona State University (Publisher)
Created2020
161449-Thumbnail Image.png
Description
Enzyme-induced carbonate precipitation (EICP) is an emerging technology for ground improvement that cements soil with calcium carbonate to increase strength and stiffness. EICP-improved soil can be used to support new facilities or it can be injected under existing facilities to prevent excessive deformation. The limitations for commercial adoption of EICP

Enzyme-induced carbonate precipitation (EICP) is an emerging technology for ground improvement that cements soil with calcium carbonate to increase strength and stiffness. EICP-improved soil can be used to support new facilities or it can be injected under existing facilities to prevent excessive deformation. The limitations for commercial adoption of EICP are the cost and the lack of implementation at field-scale. This research demonstrated two ways to reduce the cost of EICP treatment at field-scale. The first was a modification to the EICP solution such that lower amounts of chemicals are needed to achieve target strengths. The second was to use a simple and inexpensive enzyme extraction method to produce the enzyme at a large-scale. This research also involved a two-stage scale-up process to create EICP biocemented soil columns using a permeation grouting technique. The first stage was at mid-scale where 0.6 m x 0.3 m-diameter EICP biocemented soil columns were created in boxes. This work confirmed that conventional permeation grouting equipment and methods are feasible for EICP soil treatment because the columns were found to have a uniform shape, the injection method was able to deliver the EICP solution to the edges of the treatment zone, and downhole geophysics was effectively used to measure the shear wave velocity of the biocemented soil mass. The field-scale stage was performed in the Test Pit facility at the Center for Bio-mediated and Bio-inspired Geotechnics' Soils Field Laboratory. Seven biocemented soil columns were created with diameters ranging from 0.3-1 m and heights ranging from 1-2.4 m. Effective implementation at this scale was confirmed through monitoring the injection process with embedded moisture sensors, evaluating the in situ strength improvement with downhole geophysics and load testing, and testing of the excavated columns to measure shear wave velocity, dimensions, carbonate content, and strength. Lastly, a hotspot life cycle assessment was performed which identified ways to reduce the environmental impacts of EICP by using alternative sourcing of inputs and extraction of byproducts. Overall, this research project demonstrates that EICP is a viable ground improvement technique by way of successfully producing field-scale biocemented soil columns.
ContributorsMartin, Kimberly Kathryn (Author) / Kavazanjian, Jr., Edward (Thesis advisor) / Zapata, Claudia E. (Committee member) / van Paassen, Leon (Committee member) / Arizona State University (Publisher)
Created2021