Matching Items (2)

The Comparative Life Cycle Assessment of Structural Retrofit Techniques

Description

The current study conducts a comparative LCA of two alternative structural retrofit/ strengthening techniques - steel jacketing, and the carbon fiber reinforced polymer (CFRP) retrofit. A cradle-to-gate system boundary is used for both techniques. The results indicated that the CFRP

The current study conducts a comparative LCA of two alternative structural retrofit/ strengthening techniques - steel jacketing, and the carbon fiber reinforced polymer (CFRP) retrofit. A cradle-to-gate system boundary is used for both techniques. The results indicated that the CFRP retrofit technique has merits over the conventional steel jacketing in all three impact categories covered by this study. This is primarily attribute to the much less material consumption for CFRP retrofit as compared to steel jacketing for achieving the same load carrying capability of the retrofitted bridge structures. Even though the transoceanic transportation of carbon fiber has been taken into account in this study, the energy consumption and environmental impacts of CFRP transportation is still much smaller than steel due to it light weight property. The impacts of CFRP retrofit are mainly focused in the material manufacturing phase, which implies that the improvements in the carbon fiber manufacturing technology could potentially further reduce the environmental impacts of CFRP retrofit.

Contributors

Created

Date Created
2013-05

152364-Thumbnail Image.png

The development and engineering application of a fiber reinforced hybrid matrix composite for structural retrofitting and damage mitigation

Description

Civil infrastructures are susceptible to damage under the events of natural or manmade disasters. Over the last two decades, the use of emerging engineering materials, such as the fiber-reinforced plastics (FRPs), in structural retrofitting have gained significant popularity. However, due

Civil infrastructures are susceptible to damage under the events of natural or manmade disasters. Over the last two decades, the use of emerging engineering materials, such as the fiber-reinforced plastics (FRPs), in structural retrofitting have gained significant popularity. However, due to their inherent brittleness and lack of energy dissipation, undesirable failure modes of the FRP-retrofitted systems, such as sudden laminate fracture and debonding, have been frequently observed. In this light, a Carbon-fiber reinforced Hybrid-polymeric Matrix Composite (or CHMC) was developed to provide a superior, yet affordable, solution for infrastructure damage mitigation and protection. The microstructural and micromechanical characteristics of the CHMC was investigated using scanning electron microscopy (SEM) and nanoindentation technique. The mechanical performance, such as damping, was identified using free and forced vibration tests. A simplified analytical model based on micromechanics was developed to predict the laminate stiffness using the modulus profile tested by the nanoindentation. The prediction results were verified by the flexural modulus calculated from the vibration tests. The feasibility of using CHMC to retrofit damaged structural systems was investigated via a series of structural component level tests. The effectiveness of using CHMC versus conventional carbon-fiber reinforced epoxy (CF/ epoxy) to retrofit notch damaged steel beams were tested. The comparison of the test results indicated the superior deformation capacity of the CHMC retrofitted beams. The full field strain distributions near the critical notch tip region were experimentally determined by the digital imaging correlation (DIC), and the results matched well with the finite element analysis (FEA) results. In the second series of tests, the application of CHMC was expanded to retrofit the full-scale fatigue-damaged concrete-encased steel (or SRC) girders. Similar to the notched steel beam tests, the CHMC retrofitted SRC girders exhibited substantially better post-peak load ductility than that of CF/ epoxy retrofitted girder. Lastly, a quasi-static push over test on the CHMC retrofitted reinforced concrete shear wall further highlighted the CHMC's capability of enhancing the deformation and energy dissipating potential of the damaged civil infrastructure systems. Analytical and numerical models were developed to assist the retrofitting design using the newly developed CHMC material.

Contributors

Agent

Created

Date Created
2013