Matching Items (18)

134286-Thumbnail Image.png

Fielding an Autonomous Cobot in a University Environment: Engineering and Evaluation

Description

Many researchers aspire to create robotics systems that assist humans in common office tasks, especially by taking over delivery and messaging tasks. For meaningful interactions to take place, a mobile

Many researchers aspire to create robotics systems that assist humans in common office tasks, especially by taking over delivery and messaging tasks. For meaningful interactions to take place, a mobile robot must be able to identify the humans it interacts with and communicate successfully with them. It must also be able to successfully navigate the office environment. While mobile robots are well suited for navigating and interacting with elements inside a deterministic office environment, attempting to interact with human beings in an office environment remains a challenge due to the limits on the amount of cost-efficient compute power onboard the robot. In this work, I propose the use of remote cloud services to offload intensive interaction tasks. I detail the interactions required in an office environment and discuss the challenges faced when implementing a human-robot interaction platform in a stochastic office environment. I also experiment with cloud services for facial recognition, speech recognition, and environment navigation and discuss my results. As part of my thesis, I have implemented a human-robot interaction system utilizing cloud APIs into a mobile robot, enabling it to navigate the office environment, identify humans within the environment, and communicate with these humans.

Contributors

Created

Date Created
  • 2017-05

154975-Thumbnail Image.png

An investigation of topics in model-lite planning and multi-agent planning

Description

Automated planning addresses the problem of generating a sequence of actions that enable a set of agents to achieve their goals.This work investigates two important topics from the field of

Automated planning addresses the problem of generating a sequence of actions that enable a set of agents to achieve their goals.This work investigates two important topics from the field of automated planning, namely model-lite planning and multi-agent planning. For model-lite planning, I focus on a prominent model named Annotated PDDL and it's related application of robust planning. For this model, I try to identify a method of leveraging additional domain information (available in the form of successful plan traces). I use this information to refine the set of possible domains to generate more robust plans (as compared to the original planner) for any given problem. This method also provides us a way of overcoming one of the major drawbacks of the original approach, namely the need for a domain writer to explicitly identify the annotations.

For the second topic, the central question I ask is ``{\em under what conditions are multiple agents actually needed to solve a given planning problem?}''. To answer this question, the multi-agent planning (MAP) problem is classified into several sub-classes and I identify the conditions in each of these sub-classes that can lead to required cooperation (RC). I also identify certain sub-classes of multi-agent planning problems (named DVC-RC problems), where the problems can be simplified using a single virtual agent. This insight is later used to propose a new planner designed to solve problems from these subclasses. Evaluation of this new planner on all the current multi-agent planning benchmarks reveals that most current multi-agent planning benchmarks only belong to a small subset of possible classes of multi-agent planning problems.

Contributors

Agent

Created

Date Created
  • 2016

Roblocks: An Educational System for AI Planning and Reasoning

Description

This research introduces Roblocks, a user-friendly system for learning Artificial Intelligence (AI) planning concepts using mobile manipulator robots. It uses a visual programming interface based on block-structured programming to make

This research introduces Roblocks, a user-friendly system for learning Artificial Intelligence (AI) planning concepts using mobile manipulator robots. It uses a visual programming interface based on block-structured programming to make AI planning concepts easier to grasp for those who are new to robotics and AI planning. Users get to accomplish any desired tasks by dynamically populating puzzle shaped blocks encoding the robot’s possible actions, allowing them to carry out tasks like navigation, planning, and manipulation by connecting blocks instead of writing code. Roblocks has two levels, where in the first level users are made to re-arrange a jumbled set of actions of a plan in the correct order so that a given goal could be achieved. In the second level, they select actions of their choice but at each step only those actions pertaining to the current state are made available to them, thereby pruning down the vast number of possible actions and suggesting only the truly feasible and relevant actions. Both of these levels have a simulation where the user plan is executed. Moreover, if the user plan is invalid or fails to achieve the given goal condition then an explanation for the failure is provided in simple English language. This makes it easier for everyone (especially for non-roboticists) to understand the cause of the failure.

Contributors

Agent

Created

Date Created
  • 2019

157926-Thumbnail Image.png

Hierarchical Manipulation for Constructing Free Standing Structures

Description

In order for a robot to solve complex tasks in real world, it needs to compute discrete, high-level strategies that can be translated into continuous movement trajectories. These problems become

In order for a robot to solve complex tasks in real world, it needs to compute discrete, high-level strategies that can be translated into continuous movement trajectories. These problems become increasingly difficult with increasing numbers of objects and domain constraints, as well as with the increasing degrees of freedom of robotic manipulator arms.

The first part of this thesis develops and investigates new methods for addressing these problems through hierarchical task and motion planning for manipulation with a focus on autonomous construction of free-standing structures using precision-cut planks. These planks can be arranged in various orientations to design complex structures; reliably and autonomously building such structures from scratch is computationally intractable due to the long planning horizon and the infinite branching factor of possible grasps and placements that the robot could make.

An abstract representation is developed for this class of problems and show how pose generators can be used to autonomously compute feasible robot motion plans for constructing a given structure. The approach was evaluated through simulation and on a real ABB YuMi robot. Results show that hierarchical algorithms for planning can effectively overcome the computational barriers to solving such problems.

The second part of this thesis proposes a deep learning-based algorithm to identify critical regions for motion planning. Further investigation is done whether these learned critical regions can be translated to learn high-level landmark actions for automated planning.

Contributors

Agent

Created

Date Created
  • 2019

155536-Thumbnail Image.png

Representing Hybrid Transition Systems in an Action Language Modulo ODEs

Description

Several physical systems exist in the real world that involve continuous as well as discrete changes. These range from natural dynamic systems like the system of a bouncing ball to

Several physical systems exist in the real world that involve continuous as well as discrete changes. These range from natural dynamic systems like the system of a bouncing ball to robotic dynamic systems such as planning the motion of a robot across obstacles. The key aspects of effectively describing such dynamic systems is to be able to plan and verify the evolution of the continuous components of the system while simultaneously maintaining critical constraints. Developing a framework that can effectively represent and find solutions to such physical systems prove to be highly advantageous. Both hybrid automata and action languages are formal models for describing the evolution of dynamic systems. The action language C+ is a rich and expressive language framework to formalize physical systems, but can be used only with physical systems in the discrete domain and is limited in its support of continuous domain components of such systems. Hybrid Automata is a well established formalism used to represent such complex physical systems at a theoretical level, however it is not expressive enough to capture the complex relations between the components of the system the way C+ does.

This thesis will focus on establishing a formal relationship between these two formalisms by showing how to succinctly represent Hybrid Automata in an action language which in turn is defined as a high-level notation for answer set programming modulo theories (ASPMT) --- an extension of answer set programs in the first-order level. Furthermore, this encoding framework is shown to be more effective and expressive than Hybrid Automata by highlighting its ability in allowing states of a hybrid transition system to be defined by complex relations among components that would otherwise be abstracted away in Hybrid Automata. The framework is further realized in the implementation of the system CPLUS2ASPMT, which takes advantage of state of the art ODE(Ordinary Differential Equations) based SMT solver dReal to provide support for ODE based evolution of continuous components of a dynamic system.

Contributors

Agent

Created

Date Created
  • 2017

154073-Thumbnail Image.png

Human factors analysis of automated planning technologies for human-robot teaming

Description

Humans and robots need to work together as a team to accomplish certain shared goals due to the limitations of current robot capabilities. Human assistance is required to accomplish the

Humans and robots need to work together as a team to accomplish certain shared goals due to the limitations of current robot capabilities. Human assistance is required to accomplish the tasks as human capabilities are often better suited for certain tasks and they complement robot capabilities in many situations. Given the necessity of human-robot teams, it has been long assumed that for the robotic agent to be an effective team member, it must be equipped with automated planning technologies that helps in achieving the goals that have been delegated to it by their human teammates as well as in deducing its own goal to proactively support its human counterpart by inferring their goals. However there has not been any systematic evaluation on the accuracy of this claim.

In my thesis, I perform human factors analysis on effectiveness of such automated planning technologies for remote human-robot teaming. In the first part of my study, I perform an investigation on effectiveness of automated planning in remote human-robot teaming scenarios. In the second part of my study, I perform an investigation on effectiveness of a proactive robot assistant in remote human-robot teaming scenarios.

Both investigations are conducted in a simulated urban search and rescue (USAR) scenario where the human-robot teams are deployed during early phases of an emergency response to explore all areas of the disaster scene. I evaluate through both the studies, how effective is automated planning technology in helping the human-robot teams move closer to human-human teams. I utilize both objective measures (like accuracy and time spent on primary and secondary tasks, Robot Attention Demand, etc.) and a set of subjective Likert-scale questions (on situation awareness, immediacy etc.) to investigate the trade-offs between different types of remote human-robot teams. The results from both the studies seem to suggest that intelligent robots with automated planning capability and proactive support ability is welcomed in general.

Contributors

Agent

Created

Date Created
  • 2015

155401-Thumbnail Image.png

Mediating Human-Robot Collaboration through Mixed Reality Cues

Description

This work presents a communication paradigm, using a context-aware mixed reality approach, for instructing human workers when collaborating with robots. The main objective of this approach is to utilize the

This work presents a communication paradigm, using a context-aware mixed reality approach, for instructing human workers when collaborating with robots. The main objective of this approach is to utilize the physical work environment as a canvas to communicate task-related instructions and robot intentions in the form of visual cues. A vision-based object tracking algorithm is used to precisely determine the pose and state of physical objects in and around the workspace. A projection mapping technique is used to overlay visual cues on tracked objects and the workspace. Simultaneous tracking and projection onto objects enables the system to provide just-in-time instructions for carrying out a procedural task. Additionally, the system can also inform and warn humans about the intentions of the robot and safety of the workspace. It was hypothesized that using this system for executing a human-robot collaborative task will improve the overall performance of the team and provide a positive experience to the human partner. To test this hypothesis, an experiment involving human subjects was conducted and the performance (both objective and subjective) of the presented system was compared with a conventional method based on printed instructions. It was found that projecting visual cues enabled human subjects to collaborate more effectively with the robot and resulted in higher efficiency in completing the task.

Contributors

Agent

Created

Date Created
  • 2017

158256-Thumbnail Image.png

Differentiable Harvard Machine Architecture with Neural Network Controller

Description

There have been multiple attempts of coupling neural networks with external memory components for sequence learning problems. Such architectures have demonstrated success in algorithmic, sequence transduction, question-answering and reinforcement learning

There have been multiple attempts of coupling neural networks with external memory components for sequence learning problems. Such architectures have demonstrated success in algorithmic, sequence transduction, question-answering and reinforcement learning tasks. Most notable of these attempts is the Neural Turing Machine (NTM), which is an implementation of the Turing Machine with a neural network controller that interacts with a continuous memory. Although the architecture is Turing complete and hence, universally computational, it has seen limited success with complex real-world tasks.

In this thesis, I introduce an extension of the Neural Turing Machine, the Neural Harvard Machine, that implements a fully differentiable Harvard Machine framework with a feed-forward neural network controller. Unlike the NTM, it has two different memories - a read-only program memory and a read-write data memory. A sufficiently complex task is divided into smaller, simpler sub-tasks and the program memory stores parameters of pre-trained networks trained on these sub-tasks. The controller reads inputs from an input-tape, uses the data memory to store valuable signals and writes correct symbols to an output tape. The output symbols are a function of the outputs of each sub-network and the state of the data memory. Hence, the controller learns to load the weights of the appropriate program network to generate output symbols.

A wide range of experiments demonstrate that the Harvard Machine framework learns faster and performs better than the NTM and RNNs like LSTM, as the complexity of tasks increases.

Contributors

Agent

Created

Date Created
  • 2020

158851-Thumbnail Image.png

Domain Concretization from Examples: Addressing Missing Domain Knowledge via Robust Planning

Description

Most planning agents assume complete knowledge of the domain, which may not be the case in scenarios where certain domain knowledge is missing. This problem could be due to design

Most planning agents assume complete knowledge of the domain, which may not be the case in scenarios where certain domain knowledge is missing. This problem could be due to design flaws or arise from domain ramifications or qualifications. In such cases, planning algorithms could produce highly undesirable behaviors. Planning with incomplete domain knowledge is more challenging than partial observability in the sense that the planning agent is unaware of the existence of such knowledge, in contrast to it being just unobservable or partially observable. That is the difference between known unknowns and unknown unknowns.

In this thesis, I introduce and formulate this as the problem of Domain Concretization, which is inverse to domain abstraction studied extensively before. Furthermore, I present a solution that starts from the incomplete domain model provided to the agent by the designer and uses teacher traces from human users to determine the candidate model set under a minimalistic model assumption. A robust plan is then generated for the maximum probability of success under the set of candidate models. In addition to a standard search formulation in the model-space, I propose a sample-based search method and also an online version of it to improve search time. The solution presented has been evaluated on various International Planning Competition domains where incompleteness was introduced by deleting certain predicates from the complete domain model. The solution is also tested in a robot simulation domain to illustrate its effectiveness in handling incomplete domain knowledge. The results show that the plan generated by the algorithm increases the plan success rate without impacting action cost too much.

Contributors

Agent

Created

Date Created
  • 2020

158844-Thumbnail Image.png

Learning Generalized Partial Policies from Examples

Description

Many real-world planning problems can be modeled as Markov Decision Processes (MDPs) which provide a framework for handling uncertainty in outcomes of action executions. A solution to such a planning

Many real-world planning problems can be modeled as Markov Decision Processes (MDPs) which provide a framework for handling uncertainty in outcomes of action executions. A solution to such a planning problem is a policy that handles possible contingencies that could arise during execution. MDP solvers typically construct policies for a problem instance without re-using information from previously solved instances. Research in generalized planning has demonstrated the utility of constructing algorithm-like plans that reuse such information. However, using such techniques in an MDP setting has not been adequately explored.

This thesis presents a novel approach for learning generalized partial policies that can be used to solve problems with different object names and/or object quantities using very few example policies for learning. This approach uses abstraction for state representation, which allows the identification of patterns in solutions such as loops that are agnostic to problem-specific properties. This thesis also presents some theoretical results related to the uniqueness and succinctness of the policies computed using such a representation. The presented algorithm can be used as fast, yet greedy and incomplete method for policy computation while falling back to a complete policy search algorithm when needed. Extensive empirical evaluation on discrete MDP benchmarks shows that this approach generalizes effectively and is often able to solve problems much faster than existing state-of-art discrete MDP solvers. Finally, the practical applicability of this approach is demonstrated by incorporating it in an anytime stochastic task and motion planning framework to successfully construct free-standing tower structures using Keva planks.

Contributors

Agent

Created

Date Created
  • 2020