Matching Items (70)
133610-Thumbnail Image.png
Description
Interplanetary space travel has seen a surge of interest in not only media but also within the academic field as well. No longer are we designing and investigating extravehicular activity (EVA) suits, scholars and researchers are also engineering the future suit to protect humans on the surfaces of Martian planets.

Interplanetary space travel has seen a surge of interest in not only media but also within the academic field as well. No longer are we designing and investigating extravehicular activity (EVA) suits, scholars and researchers are also engineering the future suit to protect humans on the surfaces of Martian planets. As we are progressing with technology capable of taking us even further distances than before imaginable, this thesis aims to produce an exosuit that will find a place between the planets and stars, by providing countermeasures to muscle and bone atrophy. This is achieved through the rapidly growing field of soft robotics and the technology within it. An analytical model governing torque production of an array of soft pneumatic actuators was created to provide resistive forces on the human joints. Thus, we can recreate and simulate a majority of the loads that would be experienced on earth, in microgravity. Where push-ups on earth require on average 30Nm of torque about the elbow joint, by donning this exosuit, the same forces can be experienced when pushing off of surfaces while navigating within the space capsule. It is ergonomic, low-cost, and most importantly lightweight. While weight is negligible in micro-G, the payloads required for transporting current exercising equipment are costly and would take up valuable cargo space that would otherwise be allocated to research related items or sustenance. Factor in the scaling of current "special space agent" missions times 20-50, and the problem is further exacerbated. Therefore, the proposed design has warranted potential for the short term need of Mars missions, and additionally satisfy the long-term goal of taking humanity to infinite and beyond.
ContributorsLam, Quoc Phuong (Author) / Polygerinoa, Panagiotis (Thesis director) / Zhang, Wenlong (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133548-Thumbnail Image.png
Description
Prosthetic sockets are a static interface for dynamic residual limbs. As the user's activity level increases, the volume of the residual limb decreases by up to 11% and increases by as much as 7% after activity. Currently, volume fluctuation is addressed by adding/removing prosthetic socks to change the profile of

Prosthetic sockets are a static interface for dynamic residual limbs. As the user's activity level increases, the volume of the residual limb decreases by up to 11% and increases by as much as 7% after activity. Currently, volume fluctuation is addressed by adding/removing prosthetic socks to change the profile of the residual limb. However, this is time consuming. These painful/functional issues demand a prosthetic socket with an adjustable interface that can adapt to the user's needs. This thesis presents a prototype design for a dynamic soft robotic interface which addresses this need. The actuators are adjustable depending on the user's activity level, and their structure provides targeted compression to the soft tissue which helps to limit movement of the bone relative to the socket. The engineering process was used to create this design by defining system level requirements, exploring the design space, selecting a design, and then using testing/analysis to optimize that design. The final design for the soft robotic interface meets the applicable requirements, while other requirements for the electronics/controls will be completed as future work. Testing of the prototype demonstrated promising potential for the design with further refinement. Work on this project should be continued in future research/thesis projects in order to create a viable consumer product which can improve lower limb amputee's quality of life.
ContributorsHolmes, Breanna Swift (Author) / Zhang, Wenlong (Thesis director) / Polygerinos, Panagiotis (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
155667-Thumbnail Image.png
Description
The thesis covers the development and modeling of the supervisory hybrid controller using two different methods to achieve real-world optimization and power split of a parallel hybrid vehicle with a fixed shaft connecting the Internal Combustion Engine (ICE) and Electric Motor (EM). The first strategy uses a rule based controller

The thesis covers the development and modeling of the supervisory hybrid controller using two different methods to achieve real-world optimization and power split of a parallel hybrid vehicle with a fixed shaft connecting the Internal Combustion Engine (ICE) and Electric Motor (EM). The first strategy uses a rule based controller to determine modes the vehicle should operate in. This approach is well suited for real-world applications. The second approach uses Sequential Quadratic Programming (SQP) approach in conjunction with an Equivalent Consumption Minimization Strategy (ECMS) strategy to keep the vehicle in the most efficient operating regions. This latter method is able to operate the vehicle in various drive cycles while maintaining the SOC with-in allowed charge sustaining (CS) limits. Further, the overall efficiency of the vehicle for all drive cycles is increased. The limitation here is the that process is computationally expensive; however, with advent of the low cost high performance hardware this method can be used for the hybrid vehicle control.
ContributorsMaady, Rashad Kamal (Author) / Redkar, Sangram (Thesis advisor) / Mayyas, Abdel R (Thesis advisor) / Zhang, Wenlong (Committee member) / Arizona State University (Publisher)
Created2017
147753-Thumbnail Image.png
Description

The researchers build a drone with a grasping mechanism to wrap around branches to perch. The design process and methodology are discussed along with the software and hardware configuration. The researchers explain the influences on the design and the possibilities for what it could inspire.

ContributorsDowney, Matthew Evan (Co-author) / Macias, Jose (Co-author) / Goldenberg, Edward (Co-author) / Zhang, Wenlong (Thesis director) / Aukes, Daniel (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The researchers build a drone with a grasping mechanism to wrap around branches to perch. The design process and methodology are discussed along with the software and hardware configuration. The researchers explain the influences on the design and the possibilities for what it could inspire.

ContributorsGoldenberg, Edward Bradley (Co-author) / Macias, Jose Carlos (Co-author) / Downey, Matthew (Co-author) / Zhang, Wenlong (Thesis director) / Aukes, Daniel M. (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147989-Thumbnail Image.png
Description

The majority of drones are extremely simple, their functions include flight and sometimes recording video and audio. While drone technology has continued to improve these functions, particularly flight, additional functions have not been added to mainstream drones. Although these basic functions serve as a good framework for drone designs, it

The majority of drones are extremely simple, their functions include flight and sometimes recording video and audio. While drone technology has continued to improve these functions, particularly flight, additional functions have not been added to mainstream drones. Although these basic functions serve as a good framework for drone designs, it is now time to extend off from this framework. With this Honors Thesis project, we introduce a new function intended to eventually become common to drones. This feature is a grasping mechanism that is capable of perching on branches and carrying loads within the weight limit. This concept stems from the natural behavior of many kinds of insects. It paves the way for drones to further imitate the natural design of flying creatures. Additionally, it serves to advocate for dynamic drone frames, or morphing drone frames, to become more common practice in drone designs.

ContributorsMacias, Jose Carlos (Co-author) / Goldenberg, Edward Bradley (Co-author) / Downey, Matthew (Co-author) / Zhang, Wenlong (Thesis director) / Aukes, Daniel (Committee member) / Human Systems Engineering (Contributor) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147992-Thumbnail Image.png
Description

The research presented in this Honors Thesis provides development in machine learning models which predict future states of a system with unknown dynamics, based on observations of the system. Two case studies are presented for (1) a non-conservative pendulum and (2) a differential game dictating a two-car uncontrolled intersection scenario.

The research presented in this Honors Thesis provides development in machine learning models which predict future states of a system with unknown dynamics, based on observations of the system. Two case studies are presented for (1) a non-conservative pendulum and (2) a differential game dictating a two-car uncontrolled intersection scenario. In the paper we investigate how learning architectures can be manipulated for problem specific geometry. The result of this research provides that these problem specific models are valuable for accurate learning and predicting the dynamics of physics systems.<br/><br/>In order to properly model the physics of a real pendulum, modifications were made to a prior architecture which was sufficient in modeling an ideal pendulum. The necessary modifications to the previous network [13] were problem specific and not transferrable to all other non-conservative physics scenarios. The modified architecture successfully models real pendulum dynamics. This case study provides a basis for future research in augmenting the symplectic gradient of a Hamiltonian energy function to provide a generalized, non-conservative physics model.<br/><br/>A problem specific architecture was also utilized to create an accurate model for the two-car intersection case. The Costate Network proved to be an improvement from the previously used Value Network [17]. Note that this comparison is applied lightly due to slight implementation differences. The development of the Costate Network provides a basis for using characteristics to decompose functions and create a simplified learning problem.<br/><br/>This paper is successful in creating new opportunities to develop physics models, in which the sample cases should be used as a guide for modeling other real and pseudo physics. Although the focused models in this paper are not generalizable, it is important to note that these cases provide direction for future research.

ContributorsMerry, Tanner (Author) / Ren, Yi (Thesis director) / Zhang, Wenlong (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
168312-Thumbnail Image.png
Description
Stiffness and flexibility are essential in many fields, including robotics, aerospace, bioengineering, etc. In recent years, origami-based mechanical metamaterials were designed for better mechanical properties including tunable stiffness and tunable collapsibility. However, in existing studies, the tunable stiffness is only with limited range and limited controllability. To overcome these challenges,

Stiffness and flexibility are essential in many fields, including robotics, aerospace, bioengineering, etc. In recent years, origami-based mechanical metamaterials were designed for better mechanical properties including tunable stiffness and tunable collapsibility. However, in existing studies, the tunable stiffness is only with limited range and limited controllability. To overcome these challenges, two objectives were proposed and achieved in this dissertation: first, to design mechanical metamaterials with metamaterials with selective stiffness and collapsibility; second, to design mechanical metamaterials with in-situ tunable stiffness among positive, zero, and negative.In the first part, triangulated cylinder origami was employed to build deployable mechanical metamaterials through folding and unfolding along the crease lines. These deployable structures are flexible in the deploy direction so that it can be easily collapsed along the same way as it was deployed. An origami-inspired mechanical metamaterial was designed for on-demand deployability and selective collapsibility: autonomous deployability from the collapsed state and selective collapsibility along two different paths, with low stiffness for one path and substantially high stiffness for another path. The created mechanical metamaterial yields unprecedented load bearing capability in the deploy direction while possessing great deployability and collapsibility. The principle in this prospectus can be utilized to design and create versatile origami-inspired mechanical metamaterials that can find many applications. In the second part, curved origami patterns were designed to accomplish in situ stiffness manipulation covering positive, zero, and negative stiffness by activating predefined creases on one curved origami pattern. This elegant design enables in situ stiffness switching in lightweight and space-saving applications, as demonstrated through three robotic-related components. Under a uniform load, the curved origami can provide universal gripping, controlled force transmissibility, and multistage stiffness response. This work illustrates an unexplored and unprecedented capability of curved origami, which opens new applications in robotics for this particular family of origami patterns.
ContributorsZhai, Zirui (Author) / Nian, Qiong (Thesis advisor) / Zhuang, Houlong (Committee member) / Huang, Huei-Ping (Committee member) / Zhang, Wenlong (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2021
Description

The seamless integration of autonomous vehicles (AVs) into highly interactive and dynamic driving environments requires AVs to safely and effectively communicate with human drivers. Furthermore, the design of motion planning strategies that satisfy safety constraints inherit the challenges involved in implementing a safety-critical and dynamics-aware motion planning algorithm that produces

The seamless integration of autonomous vehicles (AVs) into highly interactive and dynamic driving environments requires AVs to safely and effectively communicate with human drivers. Furthermore, the design of motion planning strategies that satisfy safety constraints inherit the challenges involved in implementing a safety-critical and dynamics-aware motion planning algorithm that produces feasible motion trajectories. Driven by the complexities of arriving at such a motion planner, this thesis leverages a motion planning toolkit that utilizes spline parameterization to compute the optimal motion trajectory within a dynamic environment. Our approach is comprised of techniques originating from optimal control, vehicle dynamics, and spline interpolation. To ensure dynamic feasibility of the computed trajectories, we formulate the optimal control problem in relation to the intrinsic state constraints derived from the bicycle state space model. In addition, we apply input constraints to bound the rate of change of the steering angle and acceleration provided to the system. To produce collision-averse trajectories, we enforce extrinsic state constraints extracted from the static and dynamic obstacles in the circumambient environment. We proceed to exploit the mathematical properties of B-splines, such as the Convex Hull Property, and the piecewise composition of polynomial functions. Second, we focus on constructing a highly interactive environment in which the con- figured optimal control problem is deployed. Vehicle interactions are categorized into two distinct cases: Case 1 is representative of a single-agent interaction, whereas Case 2 is representative of a multi-agent interaction. The computed motion trajectories per each case are displayed in simulation.

ContributorsGanti, Sruti (Author) / Zhang, Wenlong (Thesis director) / Acuna, Ruben (Committee member) / Barrett, The Honors College (Contributor) / Software Engineering (Contributor)
Created2023-05
Description

Visual odometry (VO) plays a crucial role in determining the position and orientation of an autonomous vehicle as it navigates through its environment. However, the performance of visual odometry can be significantly affected by errors in disparity estimation and LIDAR depth measurements. This thesis investigates the use of LIDAR depth

Visual odometry (VO) plays a crucial role in determining the position and orientation of an autonomous vehicle as it navigates through its environment. However, the performance of visual odometry can be significantly affected by errors in disparity estimation and LIDAR depth measurements. This thesis investigates the use of LIDAR depth correction and Stereo disparity matching, combined with stronger match filtering, to improve the accuracy and reliability of VO estimations. The study utilizes a dataset consisting of a sequence of image frames, ground truth position data, and a range of feature detection, description, and matching techniques. Results indicate that the proposed approach significantly improves the accuracy of VO estimations, providing a valuable contribution to the development of reliable and safe autonomous navigation systems. The proposed method consists of two main components: (1) an advanced disparity matching algorithm to obtain more accurate and robust disparity estimations, and (2) a LIDAR depth correction module that employs a sensor fusion approach to refine the depth information generated by LIDAR sensors. The LIDAR depth correction module combines data from multiple sensors, including LIDAR, camera, and inertial measurement unit (IMU), to produce a more accurate depth estimation. The performance of the proposed approach is evaluated using real-world datasets and benchmark visual odometry challenges. Results demonstrate that the proposed method significantly improves the accuracy and robustness of visual odometry, leading to better localization and navigation performance for autonomous vehicles. This research contributes to the ongoing development of autonomous vehicle technology by addressing critical challenges in visual odometry and offering a practical solution for more accurate and reliable self-localization

ContributorsThanga Raj, Tilak Raj (Author) / Zhang, Wenlong (Thesis director) / Sugar, Thomas (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Engineering Programs (Contributor)
Created2023-05