Matching Items (5)
Description

On-going efforts to understand the dynamics of coupled social-ecological (or more broadly, coupled infrastructure) systems and common pool resources have led to the generation of numerous datasets based on a large number of case studies. This data has facilitated the identification of important factors and fundamental principles which increase our

On-going efforts to understand the dynamics of coupled social-ecological (or more broadly, coupled infrastructure) systems and common pool resources have led to the generation of numerous datasets based on a large number of case studies. This data has facilitated the identification of important factors and fundamental principles which increase our understanding of such complex systems. However, the data at our disposal are often not easily comparable, have limited scope and scale, and are based on disparate underlying frameworks inhibiting synthesis, meta-analysis, and the validation of findings. Research efforts are further hampered when case inclusion criteria, variable definitions, coding schema, and inter-coder reliability testing are not made explicit in the presentation of research and shared among the research community. This paper first outlines challenges experienced by researchers engaged in a large-scale coding project; then highlights valuable lessons learned; and finally discusses opportunities for further research on comparative case study analysis focusing on social-ecological systems and common pool resources. Includes supplemental materials and appendices published in the International Journal of the Commons 2016 Special Issue. Volume 10 - Issue 2 - 2016.

ContributorsRatajczyk, Elicia (Author) / Brady, Ute (Author) / Baggio, Jacopo (Author) / Barnett, Allain J. (Author) / Perez Ibarra, Irene (Author) / Rollins, Nathan (Author) / Rubinos, Cathy (Author) / Shin, Hoon Cheol (Author) / Yu, David (Author) / Aggarwal, Rimjhim (Author) / Anderies, John (Author) / Janssen, Marco (Author) / ASU-SFI Center for Biosocial Complex Systems (Contributor)
Created2016-09-09
Description

Governing common pool resources (CPR) in the face of disturbances such as globalization and climate change is challenging. The outcome of any CPR governance regime is the influenced by local combinations of social, institutional, and biophysical factors, as well as cross-scale interdependencies. In this study, we take a step towards

Governing common pool resources (CPR) in the face of disturbances such as globalization and climate change is challenging. The outcome of any CPR governance regime is the influenced by local combinations of social, institutional, and biophysical factors, as well as cross-scale interdependencies. In this study, we take a step towards understanding multiple-causation of CPR outcomes by analyzing 1) the co-occurrence of Design Principles (DP) by activity (irrigation, fishery and forestry), and 2) the combination(s) of DPs leading to social and ecological success. We analyzed 69 cases pertaining to three different activities: irrigation, fishery, and forestry. We find that the importance of the design principles is dependent upon the natural and hard human made infrastructure (i.e. canals, equipment, vessels etc.). For example, clearly defined social boundaries are important when the natural infrastructure is highly mobile (i.e. tuna fish), while monitoring is more important when the natural infrastructure is more static (i.e. forests or water contained within an irrigation system). However, we also find that congruence between local conditions and rules and proportionality between investment and extraction are key for CPR success independent from the natural and human hard made infrastructure. We further provide new visualization techniques for co-occurrence patterns and add to qualitative comparative analysis by introducing a reliability metric to deal with a large meta-analysis dataset on secondary data where information is missing or uncertain.

Includes supplemental materials and appendices publications in International Journal of the Commons 2016 Special Issue. Volume 10 - Issue 2 - 2016

ContributorsBaggio, Jacopo (Author) / Barnett, Alain J. (Author) / Perez, Irene (Author) / Brady, Ute (Author) / Ratajczyk, Elicia (Author) / Rollins, Nathan (Author) / Rubinos, Cathy (Author) / Shin, Hoon Cheol (Author) / Yu, David (Author) / Aggarwal, Rimjhim (Author) / Anderies, John (Author) / Janssen, Marco (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2016-09-09
129581-Thumbnail Image.png
Description

The context in which many self-governed commons systems operate will likely be significantly altered as globalization processes play out over the next few decades. Such dramatic changes will induce some systems to fail and subsequently to be transformed, rather than merely adapt. Despite this possibility, research on globalization-induced transformations of

The context in which many self-governed commons systems operate will likely be significantly altered as globalization processes play out over the next few decades. Such dramatic changes will induce some systems to fail and subsequently to be transformed, rather than merely adapt. Despite this possibility, research on globalization-induced transformations of social-ecological systems (SESs) is still underdeveloped. We seek to help fill this gap by exploring some patterns of transformation in SESs and the question of what factors help explain the persistence of cooperation in the use of common-pool resources through transformative change. Through the analysis of 89 forest commons in South Korea that experienced such transformations, we found that there are two broad types of transformation, cooperative and noncooperative. We also found that two system-level properties, transaction costs associated group size and network diversity, may affect the direction of transformation. SESs with smaller group sizes and higher network diversity may better organize cooperative transformations when the existing system becomes untenable.

ContributorsYu, David (Author) / Anderies, John (Author) / Lee, Dowon (Author) / Perez, Irene (Author) / Julie Ann Wrigley Global Institute of Sustainability (Contributor)
Created2013-11-30
128244-Thumbnail Image.png
Description

Large-N comparative studies have helped common pool resource scholars gain general insights into the factors that influence collective action and governance outcomes. However, these studies are often limited by missing data, and suffer from the methodological limitation that important information is lost when we reduce textual information to quantitative data.

Large-N comparative studies have helped common pool resource scholars gain general insights into the factors that influence collective action and governance outcomes. However, these studies are often limited by missing data, and suffer from the methodological limitation that important information is lost when we reduce textual information to quantitative data. This study was motivated by nine case studies that appeared to be inconsistent with the expectation that the presence of Ostrom’s Design Principles increases the likelihood of successful common pool resource governance. These cases highlight the limitations of coding and analyzing Large-N case studies.

We examine two issues: 1) the challenge of missing data and 2) potential approaches that rely on context (which is often lost in the coding process) to address inconsistencies between empirical observations theoretical predictions. For the latter, we conduct a post-hoc qualitative analysis of a large-N comparative study to explore 2 types of inconsistencies: 1) cases where evidence for nearly all design principles was found, but available evidence led to the assessment that the CPR system was unsuccessful and 2) cases where the CPR system was deemed successful despite finding limited or no evidence for design principles. We describe inherent challenges to large-N comparative analysis to coding complex and dynamically changing common pool resource systems for the presence or absence of design principles and the determination of “success”. Finally, we illustrate how, in some cases, our qualitative analysis revealed that the identity of absent design principles explained inconsistencies hence de-facto reconciling such apparent inconsistencies with theoretical predictions. This analysis demonstrates the value of combining quantitative and qualitative analysis, and using mixed-methods approaches iteratively to build comprehensive methodological and theoretical approaches to understanding common pool resource governance in a dynamically changing context.

ContributorsBarnett, Allain (Author) / Baggio, Jacopo (Author) / Shin, Hoon Cheol (Author) / Yu, David (Author) / Perez Ibarra, Irene (Author) / Rubinos, Cathy (Author) / Brady, Ute (Author) / Ratajczyk, Elicia (Author) / Rollins, Nathan (Author) / Aggarwal, Rimjhim (Author) / Anderies, John (Author) / Janssen, Marco (Author) / ASU-SFI Center for Biosocial Complex Systems (Contributor)
Created2016-09-09
128184-Thumbnail Image.png
Description

Social roles are thought to play an important role in determining the capacity for collective action in a community regarding the use of shared resources. Here we report on the results of a study using a behavioral experimental approach regarding the relationship between social roles and the performance of social-ecological

Social roles are thought to play an important role in determining the capacity for collective action in a community regarding the use of shared resources. Here we report on the results of a study using a behavioral experimental approach regarding the relationship between social roles and the performance of social-ecological systems. The computer-based irrigation experiment that was the basis of this study mimics the decisions faced by farmers in small-scale irrigation systems. In each of 20 rounds, which are analogous to growing seasons, participants face a two-stage commons dilemma. First they must decide how much to invest in the public infrastructure, e.g., canals and water diversion structures. Second, they must decide how much to extract from the water made available by that public infrastructure. Each round begins with a 60-second communication period before the players make their investment and extraction decisions. By analyzing the chat messages exchanged among participants during the communication stage of the experiment, we coded up to three roles per participant using the scheme of seven roles known to be important in the literature: leader, knowledge generator, connector, follower, moralist, enforcer, and observer. Our study supports the importance of certain social roles (e.g., connector) previously highlighted by several case study analyses. However, using qualitative comparative analysis we found that none of the individual roles was sufficient for groups to succeed, i.e., to reach a certain level of group production. Instead, we found that a combination of at least five roles was necessary for success. In addition, in the context of upstream-downstream asymmetry, we observed a pattern in which social roles assumed by participants tended to differ by their positions. Although our work generated some interesting insights, further research is needed to determine how robust our findings are to different action situations, such as biophysical context, social network, and resource uncertainty.

ContributorsPerez, Irene (Author) / Yu, David (Author) / Janssen, Marco (Author) / Anderies, John (Author) / ASU-SFI Center for Biosocial Complex Systems (Contributor)
Created2015