Matching Items (34)

129346-Thumbnail Image.png

Quantum chaotic tunneling in graphene systems with electron-electron interactions

Description

An outstanding and fundamental problem in contemporary physics is to include and probe the many-body effect in the study of relativistic quantum manifestations of classical chaos. We address this problem

An outstanding and fundamental problem in contemporary physics is to include and probe the many-body effect in the study of relativistic quantum manifestations of classical chaos. We address this problem using graphene systems described by the Hubbard Hamiltonian in the setting of resonant tunneling. Such a system consists of two symmetric potential wells separated by a potential barrier, and the geometric shape of the whole domain can be chosen to generate integrable or chaotic dynamics in the classical limit. Employing a standard mean-field approach to calculating a large number of eigenenergies and eigenstates, we uncover a class of localized states with near-zero tunneling in the integrable systems. These states are not the edge states typically seen in graphene systems, and as such they are the consequence of many-body interactions. The physical origin of the non-edge-state type of localized states can be understood by the one-dimensional relativistic quantum tunneling dynamics through the solutions of the Dirac equation with appropriate boundary conditions. We demonstrate that, when the geometry of the system is modified to one with chaos, the localized states are effectively removed, implying that in realistic situations where many-body interactions are present, classical chaos is capable of facilitating greatly quantum tunneling. This result, besides its fundamental importance, can be useful for the development of nanoscale devices such as graphene-based resonant-tunneling diodes.

Contributors

Agent

Created

Date Created
  • 2014-12-16

129649-Thumbnail Image.png

Relativistic quantum tunneling of a Dirac fermion in nonhyperbolic chaotic systems

Description

Nonhyperbolicity, as characterized by the coexistence of Kolmogorov-Arnold-Moser (KAM) tori and chaos in the phase space, is generic in classical Hamiltonian systems. An open but fundamental question in physics concerns

Nonhyperbolicity, as characterized by the coexistence of Kolmogorov-Arnold-Moser (KAM) tori and chaos in the phase space, is generic in classical Hamiltonian systems. An open but fundamental question in physics concerns the relativistic quantum manifestations of nonhyperbolic dynamics. We choose the mushroom billiard that has been mathematically proven to be nonhyperbolic, and study the resonant tunneling dynamics of a massless Dirac fermion. We find that the tunneling rate as a function of the energy exhibits a striking "clustering" phenomenon, where the majority of the values of the rate concentrate on a narrow region, as a result of the chaos component in the classical phase space. Relatively few values of the tunneling rate, however, spread outside the clustering region due to the integrable component. Resonant tunneling of electrons in nonhyperbolic chaotic graphene systems exhibits a similar behavior. To understand these numerical results, we develop a theoretical framework by combining analytic solutions of the Dirac equation in certain integrable domains and physical intuitions gained from current understanding of the quantum manifestations of chaos. In particular, we employ a theoretical formalism based on the concept of self-energies to calculate the tunneling rate and analytically solve the Dirac equation in one dimension as well as in two dimensions for a circular-ring-type of tunneling systems exhibiting integrable dynamics in the classical limit. Because relatively few and distinct classical periodic orbits are present in the integrable component, the corresponding relativistic quantum states can have drastically different behaviors, leading to a wide spread in the values of the tunneling rate in the energy-rate plane. In contrast, the chaotic component has embedded within itself an infinite number of unstable periodic orbits, which provide far more quantum states for tunneling. Due to the nature of chaos, these states are characteristically similar, leading to clustering of the values of the tunneling rate in a narrow band. The appealing characteristic of our work is a demonstration and physical understanding of the "mixed" role played by chaos and regular dynamics in shaping relativistic quantum tunneling dynamics.

Contributors

Agent

Created

Date Created
  • 2013-09-18

158763-Thumbnail Image.png

From Data Collection to Learning from Distributed Data: a Minimum Cost Incentive Mechanism for Private Discrete Distribution Estimation and an Optimal Stopping Approach for Iterative Training in Federated Learning

Description

The first half of this dissertation introduces a minimum cost incentive mechanism for collecting discrete distributed private data for big-data analysis. The goal of an incentive mechanism is to incentivize

The first half of this dissertation introduces a minimum cost incentive mechanism for collecting discrete distributed private data for big-data analysis. The goal of an incentive mechanism is to incentivize informative reports and make sure randomization in the reported data does not exceed a target level. It answers two fundamental questions: what is the minimum payment required to incentivize an individual to submit data with quality level $\epsilon$? and what incentive mechanisms can achieve the minimum payment? A lower bound on the minimum amount of payment required for guaranteeing quality level $\epsilon$ is derived. Inspired by the lower bound, our incentive mechanism (WINTALL) first decides a winning answer based on reported data, then pays to individuals whose reported data match the winning answer. The expected payment of WINTALL matches lower bound asymptotically. Real-world experiments on Amazon Mechanical Turk are presented to further illustrate novelty of the principle behind WINTALL.

The second half studies problem of iterative training in Federated Learning. A system with a single parameter server and $M$ client devices is considered for training a predictive learning model with distributed data. The clients communicate with the parameter server using a common wireless channel so each time, only one device can transmit. The training is an iterative process consisting of multiple rounds. Adaptive training is considered where the parameter server decides when to stop/restart a new round, so the problem is formulated as an optimal stopping problem. While this optimal stopping problem is difficult to solve, a modified optimal stopping problem is proposed. Then a low complexity algorithm is introduced to solve the modified problem, which also works for the original problem. Experiments on a real data set shows significant improvements compared with policies collecting a fixed number of updates in each iteration.

Contributors

Agent

Created

Date Created
  • 2020

153686-Thumbnail Image.png

Wireless network design and optimization: from social awareness to security

Description

A principal goal of this dissertation is to study wireless network design and optimization with the focus on two perspectives: 1) socially-aware mobile networking and computing; 2) security and privacy

A principal goal of this dissertation is to study wireless network design and optimization with the focus on two perspectives: 1) socially-aware mobile networking and computing; 2) security and privacy in wireless networking. Under this common theme, this dissertation can be broadly organized into three parts.

The first part studies socially-aware mobile networking and computing. First, it studies random access control and power control under a social group utility maximization (SGUM) framework. The socially-aware Nash equilibria (SNEs) are derived and analyzed. Then, it studies mobile crowdsensing under an incentive mechanism that exploits social trust assisted reciprocity (STAR). The efficacy of the STAR mechanism is thoroughly investigated. Next, it studies mobile users' data usage behaviors under the impact of social services and the wireless operator's pricing. Based on a two-stage Stackelberg game formulation, the user demand equilibrium (UDE) is analyzed in Stage II and the optimal pricing strategy is developed in Stage I. Last, it studies opportunistic cooperative networking under an optimal stopping framework with two-level decision-making. For both cases with or without dedicated relays, the optimal relaying strategies are derived and analyzed.

The second part studies radar sensor network coverage for physical security. First, it studies placement of bistatic radar (BR) sensor networks for barrier coverage. The optimality of line-based placement is analyzed, and the optimal placement of BRs on a line segment is characterized. Then, it studies the coverage of radar sensor networks that exploits the Doppler effect. Based on a Doppler coverage model, an efficient method is devised to characterize Doppler-covered regions and an algorithm is developed to find the minimum radar density required for Doppler coverage.

The third part studies cyber security and privacy in socially-aware networking and computing. First, it studies random access control, cooperative jamming, and spectrum access under an extended SGUM framework that incorporates negative social ties. The SNEs are derived and analyzed. Then, it studies pseudonym change for personalized location privacy under the SGUM framework. The SNEs are analyzed and an efficient algorithm is developed to find an SNE with desirable properties.

Contributors

Agent

Created

Date Created
  • 2015

New multi-nodal wireless communication system method

Description

The purpose of this paper is to introduce a new method of dividing wireless communication (such as the 802.11a/b/g
and cellular UMTS MAC protocols) across multiple unreliable communication links

The purpose of this paper is to introduce a new method of dividing wireless communication (such as the 802.11a/b/g
and cellular UMTS MAC protocols) across multiple unreliable communication links (such as Ethernet). The purpose is to introduce the appropriate hardware, software, and system architecture required to provide the basis for a wireless system (using a 802.11a/b/g
and cellular protocols as a model) that can scale to support thousands of users simultaneously (say in a large office building, super chain store, etc.) or in a small, but very dense communication RF region. Elements of communication between a base station and a Mobile Station will be analyzed statistically to demonstrate higher throughput, fewer collisions and lower bit error rates (BER) with the given bandwidth defined by the 802.11n wireless specification (use of MIMO channels will be evaluated). A new network nodal paradigm will be presented. Alternative link layer communication techniques will be recommended and analyzed for the affect on mobile devices. The analysis will describe how the algorithms used by state machines implemented on Mobile Stations and Wi-Fi client devices will be influenced by new base station transmission behavior. New hardware design techniques that can be used to optimize this architecture as well as hardware design principles in regard to the minimal hardware functional blocks required to support such a system design will be described. Hardware design and verification simulation techniques to prove the hardware design will accommodate an acceptable level of performance to meet the strict timing as it relates to this new system architecture.

Contributors

Agent

Created

Date Created
  • 2014

156796-Thumbnail Image.png

Security and Privacy in Mobile Devices: Novel Attacks and Countermeasures

Description

Mobile devices have penetrated into every aspect of modern world. For one thing, they are becoming ubiquitous in daily life. For the other thing, they are storing more and more

Mobile devices have penetrated into every aspect of modern world. For one thing, they are becoming ubiquitous in daily life. For the other thing, they are storing more and more data, including sensitive data. Therefore, security and privacy of mobile devices are indispensable. This dissertation consists of five parts: two authentication schemes, two attacks, and one countermeasure related to security and privacy of mobile devices.

Specifically, in Chapter 1, I give an overview the challenges and existing solutions in these areas. In Chapter 2, a novel authentication scheme is presented, which is based on a user’s tapping or sliding on the touchscreen of a mobile device. In Chapter 3, I focus on mobile app fingerprinting and propose a method based on analyzing the power profiles of targeted mobile devices. In Chapter 4, I mainly explore a novel liveness detection method for face authentication on mobile devices. In Chapter 5, I investigate a novel keystroke inference attack on mobile devices based on user eye movements. In Chapter 6, a novel authentication scheme is proposed, based on detecting a user’s finger gesture through acoustic sensing. In Chapter 7, I discuss the future work.

Contributors

Agent

Created

Date Created
  • 2018

156751-Thumbnail Image.png

Data-Driven and Game-Theoretic Approaches for Privacy

Description

In the past few decades, there has been a remarkable shift in the boundary between public and private information. The application of information technology and electronic communications allow service providers

In the past few decades, there has been a remarkable shift in the boundary between public and private information. The application of information technology and electronic communications allow service providers (businesses) to collect a large amount of data. However, this ``data collection" process can put the privacy of users at risk and also lead to user reluctance in accepting services or sharing data. This dissertation first investigates privacy sensitive consumer-retailers/service providers interactions under different scenarios, and then focuses on a unified framework for various information-theoretic privacy and privacy mechanisms that can be learned directly from data.

Existing approaches such as differential privacy or information-theoretic privacy try to quantify privacy risk but do not capture the subjective experience and heterogeneous expression of privacy-sensitivity. The first part of this dissertation introduces models to study consumer-retailer interaction problems and to better understand how retailers/service providers can balance their revenue objectives while being sensitive to user privacy concerns. This dissertation considers the following three scenarios: (i) the consumer-retailer interaction via personalized advertisements; (ii) incentive mechanisms that electrical utility providers need to offer for privacy sensitive consumers with alternative energy sources; (iii) the market viability of offering privacy guaranteed free online services. We use game-theoretic models to capture the behaviors of both consumers and retailers, and provide insights for retailers to maximize their profits when interacting with privacy sensitive consumers.

Preserving the utility of published datasets while simultaneously providing provable privacy guarantees is a well-known challenge. In the second part, a novel context-aware privacy framework called generative adversarial privacy (GAP) is introduced. Inspired by recent advancements in generative adversarial networks, GAP allows the data holder to learn the privatization mechanism directly from the data. Under GAP, finding the optimal privacy mechanism is formulated as a constrained minimax game between a privatizer and an adversary. For appropriately chosen adversarial loss functions, GAP provides privacy guarantees against strong information-theoretic adversaries. Both synthetic and real-world datasets are used to show that GAP can greatly reduce the adversary's capability of inferring private information at a small cost of distorting the data.

Contributors

Agent

Created

Date Created
  • 2018

158513-Thumbnail Image.png

Scheduling in Wireless and Healthcare Networks

Description

This dissertation studies the scheduling in two stochastic networks, a co-located wireless network and an outpatient healthcare network, both of which have a cyclic planning horizon and a deadline-related performance

This dissertation studies the scheduling in two stochastic networks, a co-located wireless network and an outpatient healthcare network, both of which have a cyclic planning horizon and a deadline-related performance metric.

For the co-located wireless network, a time-slotted system is considered. A cycle of planning horizon is called a frame, which consists of a fixed number of time slots. The size of the frame is determined by the upper-layer applications. Packets with deadlines arrive at the beginning of each frame and will be discarded if missing their deadlines, which are in the same frame. Each link of the network is associated with a quality of service constraint and an average transmit power constraint. For this system, a MaxWeight-type problem for which the solutions achieve the throughput optimality is formulated. Since the computational complexity of solving the MaxWeight-type problem with exhaustive search is exponential even for a single-link system, a greedy algorithm with complexity O(nlog(n)) is proposed, which is also throughput optimal.

The outpatient healthcare network is modeled as a discrete-time queueing network, in which patients receive diagnosis and treatment planning that involves collaboration between multiple service stations. For each patient, only the root (first) appointment can be scheduled as the following appointments evolve stochastically. The cyclic planing horizon is a week. The root appointment is optimized to maximize the proportion of patients that can complete their care by a class-dependent deadline. In the optimization algorithm, the sojourn time of patients in the healthcare network is approximated with a doubly-stochastic phase-type distribution. To address the computational intractability, a mean-field model with convergence guarantees is proposed. A linear programming-based policy improvement framework is developed, which can approximately solve the original large-scale stochastic optimization in queueing networks of realistic sizes.

Contributors

Agent

Created

Date Created
  • 2020

151475-Thumbnail Image.png

Network interdependence and information dynamics in cyber-physical systems

Description

The cyber-physical systems (CPS) are emerging as the underpinning technology for major industries in the 21-th century. This dissertation is focused on two fundamental issues in cyber-physical systems: network interdependence

The cyber-physical systems (CPS) are emerging as the underpinning technology for major industries in the 21-th century. This dissertation is focused on two fundamental issues in cyber-physical systems: network interdependence and information dynamics. It consists of the following two main thrusts. The first thrust is targeted at understanding the impact of network interdependence. It is shown that a cyber-physical system built upon multiple interdependent networks are more vulnerable to attacks since node failures in one network may result in failures in the other network, causing a cascade of failures that would potentially lead to the collapse of the entire infrastructure. There is thus a need to develop a new network science for modeling and quantifying cascading failures in multiple interdependent networks, and to develop network management algorithms that improve network robustness and ensure overall network reliability against cascading failures. To enhance the system robustness, a "regular" allocation strategy is proposed that yields better resistance against cascading failures compared to all possible existing strategies. Furthermore, in view of the load redistribution feature in many physical infrastructure networks, e.g., power grids, a CPS model is developed where the threshold model and the giant connected component model are used to capture the node failures in the physical infrastructure network and the cyber network, respectively. The second thrust is centered around the information dynamics in the CPS. One speculation is that the interconnections over multiple networks can facilitate information diffusion since information propagation in one network can trigger further spread in the other network. With this insight, a theoretical framework is developed to analyze information epidemic across multiple interconnecting networks. It is shown that the conjoining among networks can dramatically speed up message diffusion. Along a different avenue, many cyber-physical systems rely on wireless networks which offer platforms for information exchanges. To optimize the QoS of wireless networks, there is a need to develop a high-throughput and low-complexity scheduling algorithm to control link dynamics. To that end, distributed link scheduling algorithms are explored for multi-hop MIMO networks and two CSMA algorithms under the continuous-time model and the discrete-time model are devised, respectively.

Contributors

Agent

Created

Date Created
  • 2012

151324-Thumbnail Image.png

Stochastic optimization and real-time scheduling in cyber-physical systems

Description

A principal goal of this dissertation is to study stochastic optimization and real-time scheduling in cyber-physical systems (CPSs) ranging from real-time wireless systems to energy systems to distributed control systems.

A principal goal of this dissertation is to study stochastic optimization and real-time scheduling in cyber-physical systems (CPSs) ranging from real-time wireless systems to energy systems to distributed control systems. Under this common theme, this dissertation can be broadly organized into three parts based on the system environments. The first part investigates stochastic optimization in real-time wireless systems, with the focus on the deadline-aware scheduling for real-time traffic. The optimal solution to such scheduling problems requires to explicitly taking into account the coupling in the deadline-aware transmissions and stochastic characteristics of the traffic, which involves a dynamic program that is traditionally known to be intractable or computationally expensive to implement. First, real-time scheduling with adaptive network coding over memoryless channels is studied, and a polynomial-time complexity algorithm is developed to characterize the optimal real-time scheduling. Then, real-time scheduling over Markovian channels is investigated, where channel conditions are time-varying and online channel learning is necessary, and the optimal scheduling policies in different traffic regimes are studied. The second part focuses on the stochastic optimization and real-time scheduling involved in energy systems. First, risk-aware scheduling and dispatch for plug-in electric vehicles (EVs) are studied, aiming to jointly optimize the EV charging cost and the risk of the load mismatch between the forecasted and the actual EV loads, due to the random driving activities of EVs. Then, the integration of wind generation at high penetration levels into bulk power grids is considered. Joint optimization of economic dispatch and interruptible load management is investigated using short-term wind farm generation forecast. The third part studies stochastic optimization in distributed control systems under different network environments. First, distributed spectrum access in cognitive radio networks is investigated by using pricing approach, where primary users (PUs) sell the temporarily unused spectrum and secondary users compete via random access for such spectrum opportunities. The optimal pricing strategy for PUs and the corresponding distributed implementation of spectrum access control are developed to maximize the PU's revenue. Then, a systematic study of the nonconvex utility-based power control problem is presented under the physical interference model in ad-hoc networks. Distributed power control schemes are devised to maximize the system utility, by leveraging the extended duality theory and simulated annealing.

Contributors

Agent

Created

Date Created
  • 2012