Matching Items (17)

134669-Thumbnail Image.png

The Effects of Manufacturing Technology on the Microstructure of Carbon Nanotube Membranes

Description

Carbon nanotube (CNT) membranes (buckypaper) are manufactured with multiple procedures, vacuum filtration, surfactant-free, and 3D printing. A post-manufacturing process for resin impregnation is subjected to the membranes. The effects of

Carbon nanotube (CNT) membranes (buckypaper) are manufactured with multiple procedures, vacuum filtration, surfactant-free, and 3D printing. A post-manufacturing process for resin impregnation is subjected to the membranes. The effects of manufacturing processes on the microstructure and material properties are investigated for both pristine and resin saturated samples manufactured using all procedures. Microstructural characteristics that are studied include specific surface area, porosity, pore size distribution, density, and permeability. Scanning electron microscopy is used to characterize the morphology of the membrane. Brunauer-Emmett-Teller analysis is conducted on membrane samples to determine the specific surface area. Barrett-Joyner-Halenda analysis is conducted on membrane samples to determine pore characteristics. Once the microstructure is characterized for each manufacturing process for both pristine and resin saturated samples, material properties of the membrane and nanocomposite structures are explored and compared on a manufacturing basis as well as a microstructural basis. Membranes samples are interleaved in the overlap of carbon fiber polymer matrix composite tubes, which are subjected to fracture testing. The effects of carbon nanotube membrane manufacturing technology on the fracture properties of nanocomposite structures with tubular geometries are explored. In parallel, the influences of manufacturing technology on the electromechanical properties of the membrane that effect a piezoresistive response are investigated for both pristine and resin saturated membranes manufactured using both methods. The result of this study is a better understanding of the relationships between manufacturing technology and the effected microstructure, and the resulting influences on material properties for both CNT membranes and derivative nanocomposite structures. Developing an understanding of these multiscale relationships leads to an increased capacity in designing manufacturing processes specific to optimizing the expression of desired characteristics for any given application.

Contributors

Created

Date Created
  • 2017-05

134867-Thumbnail Image.png

Mechanical Properties of Recycled 3D Print Filament

Description

Filament used in 3D printers can vary by size, color, and material. Most commonly thermoplastics are used for rapid prototyping by industry. Recycled filament has the potential to reduce cost

Filament used in 3D printers can vary by size, color, and material. Most commonly thermoplastics are used for rapid prototyping by industry. Recycled filament has the potential to reduce cost and provide a more sustainable and energy efficient approach to 3D printing. This can be a viable option if recycled parts show comparable mechanical characteristics to non-recycled material. This report focuses on the development of a methodology to efficiently characterize recycled filament for application in industry. A crush sample in the shape of a hollow cube and a dog-bone shaped specimen will be created using a filament extruder and 3D printer. The crush sample will be broken and extruded to produce a recycled filament. The crush sample will undergo a varying number of recycles (i.e. breakings) per sample group to simulate mechanical degradation; 0, 1, 2, and 5 recycling loops. The samples will undergo micro mechanical (microscopy analysis) and macro mechanical (tensile) characterization.

Contributors

Created

Date Created
  • 2016-12

134773-Thumbnail Image.png

Sample Preparation Device for Testing of Ice-Metal Interfacial Fracture

Description

This thesis document outlines the construction of a device for preparation of cylindrical ice-aluminum specimens. These specimens are for testing in a uniaxial load cell with the goal of determining

This thesis document outlines the construction of a device for preparation of cylindrical ice-aluminum specimens. These specimens are for testing in a uniaxial load cell with the goal of determining properties of the ice-metal interface, as part of research into spray ice material properties and how such ice might be better removed from maritime vessels operating in sub-freezing temperatures. The design of the sample preparation device is outlined, justifications for design and component choices given and discussion of the design process and how problems which arose were tackled are included. Water is piped into the device through the freezers lid and sprayed by a full cone misting nozzle onto an aluminum sample rod. The sample rod is supported with Ultra High Molecular Weight Polyethylene pillars which allow for free rotation. A motor, timing belt and pulley assembly is used to rotate this metal rod at 1.25 RPM. The final device produces samples though intermittent flow in a 5 minutes on, 20 minutes off cycle. This intermittent flow is controlled through the use of a solenoid valve which is wired into the compressor. When the thermostat detects that the freezer is too warm, the compressor kicks on and the flow of water is stopped. Additional modifications to the freezer unit include the addition of a fan to cool the compressor during device operation. Recommendations are provided towards the end of the thesis, including suggestions to change the device to allow for constant flow and that deionized water be used instead of tap water due to hard water concerns.

Contributors

Agent

Created

Date Created
  • 2016-12

Cyclic Initiation and Propagation Fracture Properties of Seamless and Stitch Bonded Composite Pipes

Description

This paper presents the methods and materials used to investigate the fatigue fracture properties of i) seamless twill weave carbon fiber and ii) stitch bonded biaxial carbon fiber polymer matrix

This paper presents the methods and materials used to investigate the fatigue fracture properties of i) seamless twill weave carbon fiber and ii) stitch bonded biaxial carbon fiber polymer matrix composite. Additionally, the effect of notch tip placement relative to longitudinal fiber toes is investigated. The process for observing and characterizing fatigue crack damage propagation is presented. The fatigue fracture behavior is compared with data acquired from compact tension samples subjected to static tension tests in order to develop damage tolerant design guidelines for tube structures under fatigue loading.

Contributors

Created

Date Created
  • 2017-05

131171-Thumbnail Image.png

NANOSCALE INTERPHASE CHARACTERIZATION OF POROUS CNT BUCKYPAPER COMPOSITES IN CORRELATION TO INTERLAMINAR MODE I FRACTURE

Description

In this conference paper, nanoscale material property data and ASTM mode I interlaminar fracture results for three-phase buckypaper samples are presented and analyzed. Vacuum filtration and surfactant-free methods were used

In this conference paper, nanoscale material property data and ASTM mode I interlaminar fracture results for three-phase buckypaper samples are presented and analyzed. Vacuum filtration and surfactant-free methods were used to manufacture buckypaper membranes. Epoxy infused buckypaper membranes were placed in front of the crack tip in a stitch bonded carbon fiber polymer matrix composite using a hand layup technique. Peak Force Quantitative Nanomechanical Mapping (PFQNM), using probes with nominal tip radius in the range of 5 to 8 nm were used. PFQNM fully characterized the interphase region between a three-phase sample of carbon monofilament, epoxy resin, and multi-walled carbon nanotube (MWCNT) buckypaper. This experiment captured reproducible nanoscale morphological, viscoelastic, elastic and energy properties of porous MWCNT buckypaper samples. An enlarged interphase region surrounding the CNT buckypaper was found. The buckypaper and epoxy interphase thickness was found to be 50nm, higher than the 10-40nm reported for epoxy and carbon monofilaments. The observed MWCNT structure provides explanation of the increased surface roughness compared to the smooth carbon monofilaments. The increased surface roughness likely improves mechanical interlocking with the epoxy of adjacent lamina. The interphase and subsurface characterization data at the nanoscale level provide explanation for a change in crack propagation toughness. Nanoscale analysis of the buckypaper surface proved the inhomogeneous properties even at the scale of a few square micrometer. The improvement in crack initiation and propagation energy is due to mechanical interlocking, crack path diversion, and the large interphase zone surrounding the buckypaper.

Contributors

Agent

Created

Date Created
  • 2020-05

131174-Thumbnail Image.png

Nanoscale Interphase Characterization of Agglomerated MWCNT in Composites Connected to Mode I Fracture

Description

Carbon Fiber Reinforced Polymers (CFRP) are a promising engineering material because of their multifunctionality and desirable mechanical, electrical, and thermal properties. The mechanical and fracture properties of CFRPs rely on

Carbon Fiber Reinforced Polymers (CFRP) are a promising engineering material because of their multifunctionality and desirable mechanical, electrical, and thermal properties. The mechanical and fracture properties of CFRPs rely on effective stress transfer from the bulk matrix to individual carbon fibers. Pristine carbon fibers (CF) are chemically unreactive and smooth, which inhibits stress transfer mechanisms and makes CF susceptible to matrix debonding. Current composite research aims to improve the synergy between the CF and surrounding matrix by engineering the interphase. The composite interphase is characterized by mechanical properties deviating from the fiber and matrix properties. Carbon nanotubes (CNT), graphene nanoplatelets, and other carbon nanofillers have been studied extensively for their interphase-enhancing capabilities.

Contributors

Agent

Created

Date Created
  • 2020-05

133666-Thumbnail Image.png

Shape memory polymers fabricated with recycled thermoplastics by 3D printing

Description

Shape Memory Polymers (SMPs) are smart polyurethane thermoplastics that can recover their original shape after undergoing deformation. This shape recovery can be actuated by raising the SMP above its glass

Shape Memory Polymers (SMPs) are smart polyurethane thermoplastics that can recover their original shape after undergoing deformation. This shape recovery can be actuated by raising the SMP above its glass transition temperature, Tg. This report outlines a process for repeatedly recycling SMPs using 3D printing. Cubes are printed, broken down into pellets mechanically, and re-extruded into filament. This simulates a recycling iteration that the material would undergo in industry. The samples are recycled 0, 1, 3, and 5 times, then printed into rectangular and dog-bone shapes. These shapes are used to perform dynamic mechanical analysis (DMA) and 3-point bending for shape recovery testing. Samples will also be used for scanning electron microscopy (SEM) to characterize their microstructure.

Contributors

Created

Date Created
  • 2018-05

133750-Thumbnail Image.png

Damage Tolerant Design Guidelines for Seamless Carbon Fiber Composite Structures for Pressurized Cylinders

Description

Seamless carbon fiber reinforced polymer matrix (CFRP) composites are being investigated in many structural applications with the purpose of withstanding the extreme pressures and maintaining stiffness in mechanical systems. This

Seamless carbon fiber reinforced polymer matrix (CFRP) composites are being investigated in many structural applications with the purpose of withstanding the extreme pressures and maintaining stiffness in mechanical systems. This report focuses on: fabrication of CFRP tubes and end caps, the production of a pressurization system to test standards set by Fiber Reinforced Composite (FRC) Pipe and Fittings for Underground Fire Protection Service [1], developing a library for different damage types for seamless composite pipes, and evaluating pre-existing flaws with flash thermography, carrying out hydrostatic testing, and performing nondestructive testing (NDT) to characterize damage induced on the pipes such as cracking, crazing, and fiber breakage. The tasks outlined will be used to develop design guidelines for different combinations of loading systems.

Contributors

Created

Date Created
  • 2018-05

133461-Thumbnail Image.png

Design of hygrothermal aging experiment for epoxy and composite samples

Description

Epoxy resins and composite materials are well characterized in their mechanical properties. However these properties change as the materials age under different conditions, as their microstructure undergoes changes from the

Epoxy resins and composite materials are well characterized in their mechanical properties. However these properties change as the materials age under different conditions, as their microstructure undergoes changes from the absorption or desorption of water. Many of these microstructural changes occur at the interfacial region between where the matrix of the composite meets the reinforcement fiber, but still result in significant effects in the material properties. These effects have been studied and characterized under a variety of conditions by artificially aging samples. The artificial aging process focuses on exposing samples to environmental conditions such as high temperature, UV light, and humidity. While conditions like this are important to study, in real world applications the materials will not be simply resting in a laboratory created environment. In most circumstances, they are subjected to some kind of stress or impact. This report will focus on designing an experiment to analyze aged samples under tensile loading and creating a fixture that will sustain loading while the samples are aged. . The conditions that will be tested are control conditions at standard temperature and humidity in the laboratory, submerged, thermal heating, submerged and heated, and hygrothermal.

Contributors

Created

Date Created
  • 2018-05

134890-Thumbnail Image.png

Translaminar Fracture Properties of Seamless Carbon Fiber Tube Type Structures

Description

This paper presents the methods used to fabricate carbon fiber tubes with different geometries that impact their critical failure modes. Two types of carbon fiber were used in the manufacturing

This paper presents the methods used to fabricate carbon fiber tubes with different geometries that impact their critical failure modes. Two types of carbon fiber were used in the manufacturing process: seamless sleeve carbon fiber and stitched bonded sheet carbon fiber (PRI 2000-1-C). A manufacturing process for the tubes was developed for both geometries. Different epoxy systems were used for each fiber type. After curing, the surfaces of the tubes were inspected using flash thermography to characterize surface defects. The tube samples were placed in a three-point bending setup with an induced crack. The crack propagation was documented using a digital image correlation system. The process for finding the shape factors and energy release rate are presented. The fracture behavior of the tubes is compared to the data from the compact tension samples to develop damage tolerant design guidelines for tube type structures. Plate samples were prepared to compare the capacity to the demand of the circular hollow section samples. With the results of this study, design guidelines for damage tolerant structures are developed, which can be applied to many industries such as aviation, alternative energy production, and construction. This is crucial to the longevity and safety of structures and systems that are used daily in society.

Contributors

Created

Date Created
  • 2016-12