Matching Items (65)

128110-Thumbnail Image.png

Comparison of nine tractography algorithms for detecting abnormal structural brain networks in Alzheimer’s disease

Description

Alzheimer’s disease (AD) involves a gradual breakdown of brain connectivity, and network analyses offer a promising new approach to track and understand disease progression. Even so, our ability to detect

Alzheimer’s disease (AD) involves a gradual breakdown of brain connectivity, and network analyses offer a promising new approach to track and understand disease progression. Even so, our ability to detect degenerative changes in brain networks depends on the methods used. Here we compared several tractography and feature extraction methods to see which ones gave best diagnostic classification for 202 people with AD, mild cognitive impairment or normal cognition, scanned with 41-gradient diffusion-weighted magnetic resonance imaging as part of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) project. We computed brain networks based on whole brain tractography with nine different methods – four of them tensor-based deterministic (FACT, RK2, SL, and TL), two orientation distribution function (ODF)-based deterministic (FACT, RK2), two ODF-based probabilistic approaches (Hough and PICo), and one “ball-and-stick” approach (Probtrackx). Brain networks derived from different tractography algorithms did not differ in terms of classification performance on ADNI, but performing principal components analysis on networks helped classification in some cases. Small differences may still be detectable in a truly vast cohort, but these experiments help assess the relative advantages of different tractography algorithms, and different post-processing choices, when used for classification.

Contributors

Agent

Created

Date Created
  • 2015-04-14

128112-Thumbnail Image.png

Boosting brain connectome classification accuracy in Alzheimer's disease using higher-order singular value decomposition

Description

Alzheimer's disease (AD) is a progressive brain disease. Accurate detection of AD and its prodromal stage, mild cognitive impairment (MCI), are crucial. There is also a growing interest in identifying

Alzheimer's disease (AD) is a progressive brain disease. Accurate detection of AD and its prodromal stage, mild cognitive impairment (MCI), are crucial. There is also a growing interest in identifying brain imaging biomarkers that help to automatically differentiate stages of Alzheimer's disease. Here, we focused on brain structural networks computed from diffusion MRI and proposed a new feature extraction and classification framework based on higher order singular value decomposition and sparse logistic regression. In tests on publicly available data from the Alzheimer's Disease Neuroimaging Initiative, our proposed framework showed promise in detecting brain network differences that help in classifying different stages of Alzheimer's disease.

Contributors

Agent

Created

Date Created
  • 2015-07-24

128004-Thumbnail Image.png

Network Reconstruction Based on Evolutionary-Game Data via Compressive Sensing

Description

Evolutionary games model a common type of interactions in a variety of complex, networked, natural systems and social systems. Given such a system, uncovering the interacting structure of the underlying

Evolutionary games model a common type of interactions in a variety of complex, networked, natural systems and social systems. Given such a system, uncovering the interacting structure of the underlying network is key to understanding its collective dynamics. Based on compressive sensing, we develop an efficient approach to reconstructing complex networks under game-based interactions from small amounts of data. The method is validated by using a variety of model networks and by conducting an actual experiment to reconstruct a social network. While most existing methods in this area assume oscillator networks that generate continuous-time data, our work successfully demonstrates that the extremely challenging problem of reverse engineering of complex networks can also be addressed even when the underlying dynamical processes are governed by realistic, evolutionary-game type of interactions in discrete time.

Contributors

Agent

Created

Date Created
  • 2011-12-21

128373-Thumbnail Image.png

Evolution-informed modeling improves outcome prediction for cancers

Description

Despite wide applications of high-throughput biotechnologies in cancer research, many biomarkers discovered by exploring large-scale omics data do not provide satisfactory performance when used to predict cancer treatment outcomes. This

Despite wide applications of high-throughput biotechnologies in cancer research, many biomarkers discovered by exploring large-scale omics data do not provide satisfactory performance when used to predict cancer treatment outcomes. This problem is partly due to the overlooking of functional implications of molecular markers. Here, we present a novel computational method that uses evolutionary conservation as prior knowledge to discover bona fide biomarkers. Evolutionary selection at the molecular level is nature's test on functional consequences of genetic elements. By prioritizing genes that show significant statistical association and high functional impact, our new method reduces the chances of including spurious markers in the predictive model. When applied to predicting therapeutic responses for patients with acute myeloid leukemia and to predicting metastasis for patients with prostate cancers, the new method gave rise to evolution-informed models that enjoyed low complexity and high accuracy. The identified genetic markers also have significant implications in tumor progression and embrace potential drug targets. Because evolutionary conservation can be estimated as a gene-specific, position-specific, or allele-specific parameter on the nucleotide level and on the protein level, this new method can be extended to apply to miscellaneous “omics” data to accelerate biomarker discoveries.

Contributors

Agent

Created

Date Created
  • 2016-10-21

130370-Thumbnail Image.png

A Bag-of-Words Approach for Drosophila Gene Expression Pattern Annotation

Description

Background:
Drosophila gene expression pattern images document the spatiotemporal dynamics of gene expression during embryogenesis. A comparative analysis of these images could provide a fundamentally important way for studying the

Background:
Drosophila gene expression pattern images document the spatiotemporal dynamics of gene expression during embryogenesis. A comparative analysis of these images could provide a fundamentally important way for studying the regulatory networks governing development. To facilitate pattern comparison and searching, groups of images in the Berkeley Drosophila Genome Project (BDGP) high-throughput study were annotated with a variable number of anatomical terms manually using a controlled vocabulary. Considering that the number of available images is rapidly increasing, it is imperative to design computational methods to automate this task.

Results:
We present a computational method to annotate gene expression pattern images automatically. The proposed method uses the bag-of-words scheme to utilize the existing information on pattern annotation and annotates images using a model that exploits correlations among terms. The proposed method can annotate images individually or in groups (e.g., according to the developmental stage). In addition, the proposed method can integrate information from different two-dimensional views of embryos. Results on embryonic patterns from BDGP data demonstrate that our method significantly outperforms other methods.

Conclusion:
The proposed bag-of-words scheme is effective in representing a set of annotations assigned to a group of images, and the model employed to annotate images successfully captures the correlations among different controlled vocabulary terms. The integration of existing annotation information from multiple embryonic views improves annotation performance.

Contributors

Created

Date Created
  • 2009-04-21

137174-Thumbnail Image.png

Analysis of Twitter's Effect on Stock Prices

Description

Twitter has become a very popular social media site that is used daily by many people and organizations. This paper will focus on the financial aspect of Twitter, as a

Twitter has become a very popular social media site that is used daily by many people and organizations. This paper will focus on the financial aspect of Twitter, as a process will be shown to be able to mine data about specific companies' stock prices. This was done by writing a program to grab tweets about the stocks of the thirty companies in the Dow Jones.

Contributors

Agent

Created

Date Created
  • 2014-05

130273-Thumbnail Image.png

FlyExpress 7: An Integrated Discovery Platform To Study Coexpressed Genes Using in Situ Hybridization Images in Drosophila

Description

Gene expression patterns assayed across development can offer key clues about a gene’s function and regulatory role. Drosophila melanogaster is ideal for such investigations as multiple individual and high-throughput efforts

Gene expression patterns assayed across development can offer key clues about a gene’s function and regulatory role. Drosophila melanogaster is ideal for such investigations as multiple individual and high-throughput efforts have captured the spatiotemporal patterns of thousands of embryonic expressed genes in the form of in situ images. FlyExpress (www.flyexpress.net), a knowledgebase based on a massive and unique digital library of standardized images and a simple search engine to find coexpressed genes, was created to facilitate the analytical and visual mining of these patterns. Here, we introduce the next generation of FlyExpress resources to facilitate the integrative analysis of sequence data and spatiotemporal patterns of expression from images. FlyExpress 7 now includes over 100,000 standardized in situ images and implements a more efficient, user-defined search algorithm to identify coexpressed genes via Genomewide Expression Maps (GEMs). Shared motifs found in the upstream 5′ regions of any pair of coexpressed genes can be visualized in an interactive dotplot. Additional webtools and link-outs to assist in the downstream validation of candidate motifs are also provided. Together, FlyExpress 7 represents our largest effort yet to accelerate discovery via the development and dispersal of new webtools that allow researchers to perform data-driven analyses of coexpression (image) and genomic (sequence) data.

Contributors

Created

Date Created
  • 2017-06-30

130363-Thumbnail Image.png

Learning Sparse Representations for Fruit-Fly Gene Expression Pattern Image Annotation and Retrieval

Description

Background
Fruit fly embryogenesis is one of the best understood animal development systems, and the spatiotemporal gene expression dynamics in this process are captured by digital images. Analysis of these

Background
Fruit fly embryogenesis is one of the best understood animal development systems, and the spatiotemporal gene expression dynamics in this process are captured by digital images. Analysis of these high-throughput images will provide novel insights into the functions, interactions, and networks of animal genes governing development. To facilitate comparative analysis, web-based interfaces have been developed to conduct image retrieval based on body part keywords and images. Currently, the keyword annotation of spatiotemporal gene expression patterns is conducted manually. However, this manual practice does not scale with the continuously expanding collection of images. In addition, existing image retrieval systems based on the expression patterns may be made more accurate using keywords.
Results
In this article, we adapt advanced data mining and computer vision techniques to address the key challenges in annotating and retrieving fruit fly gene expression pattern images. To boost the performance of image annotation and retrieval, we propose representations integrating spatial information and sparse features, overcoming the limitations of prior schemes.
Conclusions
We perform systematic experimental studies to evaluate the proposed schemes in comparison with current methods. Experimental results indicate that the integration of spatial information and sparse features lead to consistent performance improvement in image annotation, while for the task of retrieval, sparse features alone yields better results.

Contributors

Created

Date Created
  • 2012-05-23

130364-Thumbnail Image.png

Image-level and group-level models for Drosophila gene expression pattern annotation

Description

Background
Drosophila melanogaster has been established as a model organism for investigating the developmental gene interactions. The spatio-temporal gene expression patterns of Drosophila melanogaster can be visualized by in situ

Background
Drosophila melanogaster has been established as a model organism for investigating the developmental gene interactions. The spatio-temporal gene expression patterns of Drosophila melanogaster can be visualized by in situ hybridization and documented as digital images. Automated and efficient tools for analyzing these expression images will provide biological insights into the gene functions, interactions, and networks. To facilitate pattern recognition and comparison, many web-based resources have been created to conduct comparative analysis based on the body part keywords and the associated images. With the fast accumulation of images from high-throughput techniques, manual inspection of images will impose a serious impediment on the pace of biological discovery. It is thus imperative to design an automated system for efficient image annotation and comparison.
Results
We present a computational framework to perform anatomical keywords annotation for Drosophila gene expression images. The spatial sparse coding approach is used to represent local patches of images in comparison with the well-known bag-of-words (BoW) method. Three pooling functions including max pooling, average pooling and Sqrt (square root of mean squared statistics) pooling are employed to transform the sparse codes to image features. Based on the constructed features, we develop both an image-level scheme and a group-level scheme to tackle the key challenges in annotating Drosophila gene expression pattern images automatically. To deal with the imbalanced data distribution inherent in image annotation tasks, the undersampling method is applied together with majority vote. Results on Drosophila embryonic expression pattern images verify the efficacy of our approach.
Conclusion
In our experiment, the three pooling functions perform comparably well in feature dimension reduction. The undersampling with majority vote is shown to be effective in tackling the problem of imbalanced data. Moreover, combining sparse coding and image-level scheme leads to consistent performance improvement in keywords annotation.

Contributors

Created

Date Created
  • 2013-12-03

129297-Thumbnail Image.png

ORTHOGONAL RANK-ONE MATRIX PURSUIT FOR LOW RANK MATRIX COMPLETION

Description

In this paper, we propose an efficient and scalable low rank matrix completion algorithm. The key idea is to extend the orthogonal matching pursuit method from the vector case to

In this paper, we propose an efficient and scalable low rank matrix completion algorithm. The key idea is to extend the orthogonal matching pursuit method from the vector case to the matrix case. We further propose an economic version of our algorithm by introducing a novel weight updating rule to reduce the time and storage complexity. Both versions are computationally inexpensive for each matrix pursuit iteration and find satisfactory results in a few iterations. Another advantage of our proposed algorithm is that it has only one tunable parameter, which is the rank. It is easy to understand and to use by the user. This becomes especially important in large-scale learning problems. In addition, we rigorously show that both versions achieve a linear convergence rate, which is significantly better than the previous known results. We also empirically compare the proposed algorithms with several state-of-the-art matrix completion algorithms on many real-world datasets, including the large-scale recommendation dataset Netflix as well as the MovieLens datasets. Numerical results show that our proposed algorithm is more efficient than competing algorithms while achieving similar or better prediction performance.

Contributors

Agent

Created

Date Created
  • 2014-11-30