Matching Items (2)

Optimizing Microwave Hydrolysis for 1H NMR Amino Acid Analysis of Protein Biopolymers

Description

Microwave hydrolysis of egg-white lysozyme was optimized using 1H liquid-state nuclear magnetic resonance (NMR) spectroscopy experiments for amino acid analysis (AAA). Time held under microwave hydrolysis was arrayed for 2,

Microwave hydrolysis of egg-white lysozyme was optimized using 1H liquid-state nuclear magnetic resonance (NMR) spectroscopy experiments for amino acid analysis (AAA). Time held under microwave hydrolysis was arrayed for 2, 4, 6, 8, 10, and 15 minutes. Correlations from gCOSY 2D NMR experiments combined with 1H assignments in the one-dimensional chemical shift spectra identified 18 of the 20 amino acids found in lysozyme. Comparison with Uniprot database amino acid composition values revealed the optimal microwave hydrolysis time lies between 4 and 6 minutes. Identification of lysozyme was confirmed with the ExPASy online database search tool AACompIdent. The microwave hydrolysis procedure presented is a simple analytical technique allowing quick and reliable sample preparation in less than one hour that requires no separation or derivation of amino acids residues prior to detection.

Contributors

Created

Date Created
  • 2015-05

153344-Thumbnail Image.png

Mechanistic studies of one-electron reduced bipyridine reactions relevant to carbon dioxide sequestration

Description

Increasing concentrations of carbon dioxide in the atmosphere will inevitably lead to long-term changes in climate that can have serious consequences. Controlling anthropogenic emission of carbon dioxide into the atmosphere,

Increasing concentrations of carbon dioxide in the atmosphere will inevitably lead to long-term changes in climate that can have serious consequences. Controlling anthropogenic emission of carbon dioxide into the atmosphere, however, represents a significant technological challenge. Various chemical approaches have been suggested, perhaps the most promising of these is based on electrochemical trapping of carbon dioxide using pyridine and derivatives. Optimization of this process requires a detailed understanding of the mechanisms of the reactions of reduced pyridines with carbon dioxide, which are not currently well known. This thesis describes a detailed mechanistic study of the nucleophilic and Bronsted basic properties of the radical anion of bipyridine as a model pyridine derivative, formed by one-electron reduction, with particular emphasis on the reactions with carbon dioxide. A time-resolved spectroscopic method was used to characterize the key intermediates and determine the kinetics of the reactions of the radical anion and its protonated radical form. Using a pulsed nanosecond laser, the bipyridine radical anion could be generated in-situ in less than 100 ns, which allows fast reactions to be monitored in real time. The bipyridine radical anion was found to be a very powerful one-electron donor, Bronsted base and nucleophile. It reacts by addition to the C=O bonds of ketones with a bimolecular rate constant around 1* 107 M-1 s-1. These are among the fastest nucleophilic additions that have been reported in literature. Temperature dependence studies demonstrate very low activation energies and large Arrhenius pre-exponential parameters, consistent with very high reactivity. The kinetics of E2 elimination, where the radical anion acts as a base, and SN2 substitution, where the radical anion acts as a nucleophile, are also characterized by large bimolecular rate constants in the range ca. 106 - 107 M-1 s-1. The pKa of the bipyridine radical anion was measured using a kinetic method and analysis of the data using a Marcus theory model for proton transfer. The bipyridine radical anion is found to have a pKa of 40±5 in DMSO. The reorganization energy for the proton transfer reaction was found to be 70±5 kJ/mol. The bipyridine radical anion was found to react very rapidly with carbon dioxide, with a bimolecular rate constant of 1* 108 M-1 s-1 and a small activation energy, whereas the protonated radical reacted with carbon dioxide with a rate constant that was too small to measure. The kinetic and thermodynamic data obtained in this work can be used to understand the mechanisms of the reactions of pyridines with carbon dioxide under reducing conditions.

Contributors

Agent

Created

Date Created
  • 2015