Matching Items (71)
187374-Thumbnail Image.png
Description
Graph-structured data, ranging from social networks to financial transaction networks, from citation networks to gene regulatory networks, have been widely used for modeling a myriad of real-world systems. As a prevailing model architecture to model graph-structured data, graph neural networks (GNNs) has drawn much attention in both academic and

Graph-structured data, ranging from social networks to financial transaction networks, from citation networks to gene regulatory networks, have been widely used for modeling a myriad of real-world systems. As a prevailing model architecture to model graph-structured data, graph neural networks (GNNs) has drawn much attention in both academic and industrial communities in the past decades. Despite their success in different graph learning tasks, existing methods usually rely on learning from ``big'' data, requiring a large amount of labeled data for model training. However, it is common that real-world graphs are associated with ``small'' labeled data as data annotation and labeling on graphs is always time and resource-consuming. Therefore, it is imperative to investigate graph machine learning (Graph ML) with low-cost human supervision for low-resource settings where limited or even no labeled data is available. This dissertation investigates a new research field -- Data-Efficient Graph Learning, which aims to push forward the performance boundary of graph machine learning (Graph ML) models with different kinds of low-cost supervision signals. To achieve this goal, a series of studies are conducted for solving different data-efficient graph learning problems, including graph few-shot learning, graph weakly-supervised learning, and graph self-supervised learning.
ContributorsDing, Kaize (Author) / Liu, Huan (Thesis advisor) / Xue, Guoliang (Committee member) / Yang, Yezhou (Committee member) / Caverlee, James (Committee member) / Arizona State University (Publisher)
Created2023
187520-Thumbnail Image.png
Description
Modern data center networks require efficient and scalable security analysis approaches that can analyze the relationship between the vulnerabilities. Utilizing the Attack Representation Methods (ARMs) and Attack Graphs (AGs) enables the security administrator to understand the cloud network’s current security situation at the low-level. However, the AG approach suffers from

Modern data center networks require efficient and scalable security analysis approaches that can analyze the relationship between the vulnerabilities. Utilizing the Attack Representation Methods (ARMs) and Attack Graphs (AGs) enables the security administrator to understand the cloud network’s current security situation at the low-level. However, the AG approach suffers from scalability challenges. It relies on the connectivity between the services and the vulnerabilities associated with the services to allow the system administrator to realize its security state. In addition, the security policies created by the administrator can have conflicts among them, which is often detected in the data plane of the Software Defined Networking (SDN) system. Such conflicts can cause security breaches and increase the flow rules processing delay. This dissertation addresses these challenges with novel solutions to tackle the scalability issue of Attack Graphs and detect security policy conflictsin the application plane before they are transmitted into the data plane for final installation. Specifically, it introduces a segmentation-based scalable security state (S3) framework for the cloud network. This framework utilizes the well-known divide-and-conquer approach to divide the large network region into smaller, manageable segments. It follows a well-known segmentation approach derived from the K-means clustering algorithm to partition the system into segments based on the similarity between the services. Furthermore, the dissertation presents unified intent rules that abstract the network administration from the underlying network controller’s format. It develops a networking service solution to use a bounded formal model for network service compliance checking that significantly reduces the complexity of flow rule conflict checking at the data plane level. The solution can be expended from a single SDN domain to multiple SDN domains and hybrid networks by applying network service function chaining (SFC) for inter-domain policy management.
ContributorsSabur, Abdulhakim (Author) / Zhao, Ming (Thesis advisor) / Xue, Guoliang (Committee member) / Davulcu, Hasan (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2023
171925-Thumbnail Image.png
Description
The problem of monitoring complex networks for the detection of anomalous behavior is well known. Sensors are usually deployed for the purpose of monitoring these networks for anomalies and Sensor Placement Optimization (SPO) is the problem of determining where these sensors should be placed (deployed) in the network. Prior works

The problem of monitoring complex networks for the detection of anomalous behavior is well known. Sensors are usually deployed for the purpose of monitoring these networks for anomalies and Sensor Placement Optimization (SPO) is the problem of determining where these sensors should be placed (deployed) in the network. Prior works have utilized the well known Set Cover formulation in order to determine the locations where sensors should be placed in the network, so that anomalies can be effectively detected. However, such works cannot be utilized to address the problem when the objective is to not only detect the presence of anomalies, but also to detect (distinguish) the source(s) of the detected anomalies, i.e., uniquely monitoring the network. In this dissertation, I attempt to fill in this gap by utilizing the mathematical concept of Identifying Codes and illustrating how it not only can overcome the aforementioned limitation, but also it, and its variants, can be utilized to monitor complex networks modeled from multiple domains. Over the course of this dissertation, I make key contributions which further enhance the efficacy and applicability of Identifying Codes as a monitoring strategy. First, I show how Identifying Codes are superior to not only the Set Cover formulation but also standard graph centrality metrics, for the purpose of uniquely monitoring complex networks. Second, I study novel problems such as the budget constrained Identifying Code, scalable Identifying Code, robust Identifying Code etc., and present algorithms and results for the respective problems. Third, I present useful Identifying Code results for restricted graph classes such as Unit Interval Bigraphs and Unit Disc Bigraphs. Finally, I show the universality of Identifying Codes by applying it to multiple domains.
ContributorsBasu, Kaustav (Author) / Sen, Arunabha (Thesis advisor) / Davulcu, Hasan (Committee member) / Liu, Huan (Committee member) / Xue, Guoliang (Committee member) / Arizona State University (Publisher)
Created2022
171963-Thumbnail Image.png
Description
The Internet-of-Things (IoT) paradigm is reshaping the ways to interact with the physical space. Many emerging IoT applications need to acquire, process, gain insights from, and act upon the massive amount of data continuously produced by ubiquitous IoT sensors. It is nevertheless technically challenging and economically prohibitive for each IoT

The Internet-of-Things (IoT) paradigm is reshaping the ways to interact with the physical space. Many emerging IoT applications need to acquire, process, gain insights from, and act upon the massive amount of data continuously produced by ubiquitous IoT sensors. It is nevertheless technically challenging and economically prohibitive for each IoT application to deploy and maintain a dedicated large-scale sensor network over distributed wide geographic areas. Built upon the Sensing-as-a-Service paradigm, cloud-sensing service providers are emerging to provide heterogeneous sensing data to various IoT applications with a shared sensing substrate. Cyber threats are among the biggest obstacles against the faster development of cloud-sensing services. This dissertation presents novel solutions to achieve trustworthy IoT sensing-as-a-service. Chapter 1 introduces the cloud-sensing system architecture and the outline of this dissertation. Chapter 2 presents MagAuth, a secure and usable two-factor authentication scheme that explores commercial off-the-shelf wrist wearables with magnetic strap bands to enhance the security and usability of password-based authentication for touchscreen IoT devices. Chapter 3 presents SmartMagnet, a novel scheme that combines smartphones and cheap magnets to achieve proximity-based access control for IoT devices. Chapter 4 proposes SpecKriging, a new spatial-interpolation technique based on graphic neural networks for secure cooperative spectrum sensing which is an important application of cloud-sensing systems. Chapter 5 proposes a trustworthy multi-transmitter localization scheme based on SpecKriging. Chapter 6 discusses the future work.
ContributorsZhang, Yan (Author) / Zhang, Yanchao YZ (Thesis advisor) / Fan, Deliang (Committee member) / Xue, Guoliang (Committee member) / Reisslein, Martin (Committee member) / Arizona State University (Publisher)
Created2022
171423-Thumbnail Image.png
Description
The emerging multimodal mobility as a service (MaaS) and connected and automated mobility (CAM) are expected to improve individual travel experience and entire transportation system performance in various aspects, such as convenience, safety, and reliability. There have been extensive efforts in the literature devoted to enhancing existing and developing new

The emerging multimodal mobility as a service (MaaS) and connected and automated mobility (CAM) are expected to improve individual travel experience and entire transportation system performance in various aspects, such as convenience, safety, and reliability. There have been extensive efforts in the literature devoted to enhancing existing and developing new methodologies and tools to investigate the impacts and potentials of CAM systems. Due to the hierarchical nature of CAM systems and associated intrinsic correlated human factors and physical infrastructures from various resolutions, simply considering components across different levels into a single model may be practically infeasible and computationally prohibitive in operation and decision stages. One of the greatest challenges in existing studies is to construct a theoretically sound and computationally efficient architecture such that CAM system modeling can be performed in an inherently consistent cross-resolution manner. This research aims to contribute to the modeling of CAM systems on layered transportation networks, with a special focus on the following three aspects: (1) layered CAM system architecture with a tight network and modeling consistency, in which different levels of tasks can be efficiently performed at dedicated layers; (2) cross-resolution traffic state estimation in CAM systems using heterogeneous observations; and (3) integrated city logistics operation optimization in CAM for improving system performance.
ContributorsLu, Jiawei (Author) / Zhou, Xuesong (Thesis advisor) / Pendyala, Ram (Committee member) / Xue, Guoliang (Committee member) / Mittelmann, Hans (Committee member) / Arizona State University (Publisher)
Created2022
171813-Thumbnail Image.png
Description
This dissertation investigates the problem of efficiently and effectively prioritizing a vulnerability risk in a computer networking system. Vulnerability prioritization is one of the most challenging issues in vulnerability management, which affects allocating preventive and defensive resources in a computer networking system. Due to the large number of identified vulnerabilities,

This dissertation investigates the problem of efficiently and effectively prioritizing a vulnerability risk in a computer networking system. Vulnerability prioritization is one of the most challenging issues in vulnerability management, which affects allocating preventive and defensive resources in a computer networking system. Due to the large number of identified vulnerabilities, it is very challenging to remediate them all in a timely fashion. Thus, an efficient and effective vulnerability prioritization framework is required. To deal with this challenge, this dissertation proposes a novel risk-based vulnerability prioritization framework that integrates the recent artificial intelligence techniques (i.e., neuro-symbolic computing and logic reasoning). The proposed work enhances the vulnerability management process by prioritizing vulnerabilities with high risk by refining the initial risk assessment with the network constraints. This dissertation is organized as follows. The first part of this dissertation presents the overview of the proposed risk-based vulnerability prioritization framework, which contains two stages. The second part of the dissertation investigates vulnerability risk features in a computer networking system. The third part proposes the first stage of this framework, a vulnerability risk assessment model. The proposed assessment model captures the pattern of vulnerability risk features to provide a more comprehensive risk assessment for a vulnerability. The fourth part proposes the second stage of this framework, a vulnerability prioritization reasoning engine. This reasoning engine derives network constraints from interactions between vulnerabilities and network environment elements based on network and system setups. This proposed framework assesses a vulnerability in a computer networking system based on its actual security impact by refining the initial risk assessment with the network constraints.
ContributorsZeng, Zhen (Author) / Xue, Guoliang (Thesis advisor) / Liu, Huan (Committee member) / Zhao, Ming (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2022
153986-Thumbnail Image.png
Description
The recent years have witnessed a rapid development of mobile devices and smart devices. As more and more people are getting involved in the online environment, privacy issues are becoming increasingly important. People’s privacy in the digital world is much easier to leak than in the real world, because every

The recent years have witnessed a rapid development of mobile devices and smart devices. As more and more people are getting involved in the online environment, privacy issues are becoming increasingly important. People’s privacy in the digital world is much easier to leak than in the real world, because every action people take online would leave a trail of information which could be recorded, collected and used by malicious attackers. Besides, service providers might collect users’ information and analyze them, which also leads to a privacy breach. Therefore, preserving people’s privacy is very important in the online environment.

In this dissertation, I study the problems of preserving people’s identity privacy and loca- tion privacy in the online environment. Specifically, I study four topics: identity privacy in online social networks (OSNs), identity privacy in anonymous message submission, lo- cation privacy in location based social networks (LBSNs), and location privacy in location based reminders. In the first topic, I propose a system which can hide users’ identity and data from untrusted storage site where the OSN provider puts users’ data. I also design a fine grained access control mechanism which prevents unauthorized users from accessing the data. Based on the secret sharing scheme, I construct a shuffle protocol that disconnects the relationship between members’ identities and their submitted messages in the topic of identity privacy in anonymous message submission. The message is encrypted on the mem- ber side and decrypted on the message collector side. The collector eventually gets all of the messages but does not know who submitted which message. In the third topic, I pro- pose a framework that hides users’ check-in information from the LBSN. Considering the limited computation resources on smart devices, I propose a delegatable pseudo random function to outsource computations to the much more powerful server while preserving privacy. I also implement efficient revocations. In the topic of location privacy in location based reminders, I propose a system to hide users’ reminder locations from an untrusted cloud server. I propose a cross based approach and an improved bar based approach, re- spectively, to represent a reminder area. The reminder location and reminder message are encrypted before uploading to the cloud server, which then can determine whether the dis- tance between the user’s current location and the reminder location is within the reminder distance without knowing anything about the user’s location information and the content of the reminder message.
ContributorsZhao, Xinxin (Author) / Xue, Guoliang (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Huang, Dijiang (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2015
154380-Thumbnail Image.png
Description
In brain imaging study, 3D surface-based algorithms may provide more advantages over volume-based methods, due to their sub-voxel accuracy to represent subtle subregional changes and solid mathematical foundations on which global shape analyses can be achieved on complicated topological structures, such as the convoluted cortical surfaces. On the other hand,

In brain imaging study, 3D surface-based algorithms may provide more advantages over volume-based methods, due to their sub-voxel accuracy to represent subtle subregional changes and solid mathematical foundations on which global shape analyses can be achieved on complicated topological structures, such as the convoluted cortical surfaces. On the other hand, given the enormous amount of data being generated daily, it is still challenging to develop effective and efficient surface-based methods to analyze brain shape morphometry. There are two major problems in surface-based shape analysis research: correspondence and similarity. This dissertation covers both topics by proposing novel surface registration and indexing algorithms based on conformal geometry for brain morphometry analysis.

First, I propose a surface fluid registration system, which extends the traditional image fluid registration to surfaces. With surface conformal parameterization, the complexity of the proposed registration formula has been greatly reduced, compared to prior methods. Inverse consistency is also incorporated to drive a symmetric correspondence between surfaces. After registration, the multivariate tensor-based morphometry (mTBM) is computed to measure local shape deformations. The algorithm was applied to study hippocampal atrophy associated with Alzheimer's disease (AD).

Next, I propose a ventricular surface registration algorithm based on hyperbolic Ricci flow, which computes a global conformal parameterization for each ventricular surface without introducing any singularity. Furthermore, in the parameter space, unique hyperbolic geodesic curves are introduced to guide consistent correspondences across subjects, a technique called geodesic curve lifting. Tensor-based morphometry (TBM) statistic is computed from the registration to measure shape changes. This algorithm was applied to study ventricular enlargement in mild cognitive impatient (MCI) converters.

Finally, a new shape index, the hyperbolic Wasserstein distance, is introduced. This algorithm computes the Wasserstein distance between general topological surfaces as a shape similarity measure of different surfaces. It is based on hyperbolic Ricci flow, hyperbolic harmonic map, and optimal mass transportation map, which is extended to hyperbolic space. This method fills a gap in the Wasserstein distance study, where prior work only dealt with images or genus-0 closed surfaces. The algorithm was applied in an AD vs. control cortical shape classification study and achieved promising accuracy rate.
ContributorsShi, Jie, Ph.D (Author) / Wang, Yalin (Thesis advisor) / Caselli, Richard (Committee member) / Li, Baoxin (Committee member) / Xue, Guoliang (Committee member) / Arizona State University (Publisher)
Created2016
154329-Thumbnail Image.png
Description
The presence of a rich set of embedded sensors on mobile devices has been fuelling various sensing applications regarding the activities of individuals and their surrounding environment, and these ubiquitous sensing-capable mobile devices are pushing the new paradigm of Mobile Crowd Sensing (MCS) from concept to reality. MCS aims to

The presence of a rich set of embedded sensors on mobile devices has been fuelling various sensing applications regarding the activities of individuals and their surrounding environment, and these ubiquitous sensing-capable mobile devices are pushing the new paradigm of Mobile Crowd Sensing (MCS) from concept to reality. MCS aims to outsource sensing data collection to mobile users and it could revolutionize the traditional ways of sensing data collection and processing. In the meantime, cloud computing provides cloud-backed infrastructures for mobile devices to provision their capabilities with network access. With enormous computational and storage resources along with sufficient bandwidth, it functions as the hub to handle the sensing service requests from sensing service consumers and coordinate sensing task assignment among eligible mobile users to reach a desired quality of sensing service. This paper studies the problem of sensing task assignment to mobile device owners with specific spatio-temporal traits to minimize the cost and maximize the utility in MCS while adhering to QoS constraints. Greedy approaches and hybrid solutions combined with bee algorithms are explored to address the problem.

Moreover, the privacy concerns arise with the widespread deployment of MCS from both the data contributors and the sensing service consumers. The uploaded sensing data, especially those tagged with spatio-temporal information, will disclose the personal information of the data contributors. In addition, the sensing service requests can reveal the personal interests of service consumers. To address the privacy issues, this paper constructs a new framework named Privacy-Preserving Mobile Crowd Sensing (PP-MCS) to leverage the sensing capabilities of ubiquitous mobile devices and cloud infrastructures. PP-MCS has a distributed architecture without relying on trusted third parties for privacy-preservation. In PP-MCS, the sensing service consumers can retrieve data without revealing the real data contributors. Besides, the individual sensing records can be compared against the aggregation result while keeping the values of sensing records unknown, and the k-nearest neighbors could be approximately identified without privacy leaks. As such, the privacy of the data contributors and the sensing service consumers can be protected to the greatest extent possible.
ContributorsWang, Zhijie (Thesis advisor) / Xue, Guoliang (Committee member) / Sen, Arunabha (Committee member) / Li, Jing (Committee member) / Arizona State University (Publisher)
Created2016
154217-Thumbnail Image.png
Description
Software-as-a-Service (SaaS) has received significant attention in recent years as major computer companies such as Google, Microsoft, Amazon, and Salesforce are adopting this new approach to develop software and systems. Cloud computing is a computing infrastructure to enable rapid delivery of computing resources as a utility in a dynamic, scalable,

Software-as-a-Service (SaaS) has received significant attention in recent years as major computer companies such as Google, Microsoft, Amazon, and Salesforce are adopting this new approach to develop software and systems. Cloud computing is a computing infrastructure to enable rapid delivery of computing resources as a utility in a dynamic, scalable, and virtualized manner. Computer Simulations are widely utilized to analyze the behaviors of software and test them before fully implementations. Simulation can further benefit SaaS application in a cost-effective way taking the advantages of cloud such as customizability, configurability and multi-tendency.

This research introduces Modeling, Simulation and Analysis for Software-as-Service in Cloud. The researches cover the following topics: service modeling, policy specification, code generation, dynamic simulation, timing, event and log analysis. Moreover, the framework integrates current advantages of cloud: configurability, Multi-Tenancy, scalability and recoverability.

The following chapters are provided in the architecture:

Multi-Tenancy Simulation Software-as-a-Service.

Policy Specification for MTA simulation environment.

Model Driven PaaS Based SaaS modeling.

Dynamic analysis and dynamic calibration for timing analysis.

Event-driven Service-Oriented Simulation Framework.

LTBD: A Triage Solution for SaaS.
ContributorsLi, Wu (Author) / Tsai, Wei-Tek (Thesis advisor) / Sarjoughian, Hessam S. (Committee member) / Ye, Jieping (Committee member) / Xue, Guoliang (Committee member) / Arizona State University (Publisher)
Created2015