Matching Items (70)
156932-Thumbnail Image.png
Description
Transfer learning is a sub-field of statistical modeling and machine learning. It refers to methods that integrate the knowledge of other domains (called source domains) and the data of the target domain in a mathematically rigorous and intelligent way, to develop a better model for the target domain than a

Transfer learning is a sub-field of statistical modeling and machine learning. It refers to methods that integrate the knowledge of other domains (called source domains) and the data of the target domain in a mathematically rigorous and intelligent way, to develop a better model for the target domain than a model using the data of the target domain alone. While transfer learning is a promising approach in various application domains, my dissertation research focuses on the particular application in health care, including telemonitoring of Parkinson’s Disease (PD) and radiomics for glioblastoma.

The first topic is a Mixed Effects Transfer Learning (METL) model that can flexibly incorporate mixed effects and a general-form covariance matrix to better account for similarity and heterogeneity across subjects. I further develop computationally efficient procedures to handle unknown parameters and large covariance structures. Domain relations, such as domain similarity and domain covariance structure, are automatically quantified in the estimation steps. I demonstrate METL in an application of smartphone-based telemonitoring of PD.

The second topic focuses on an MRI-based transfer learning algorithm for non-invasive surgical guidance of glioblastoma patients. Limited biopsy samples per patient create a challenge to build a patient-specific model for glioblastoma. A transfer learning framework helps to leverage other patient’s knowledge for building a better predictive model. When modeling a target patient, not every patient’s information is helpful. Deciding the subset of other patients from which to transfer information to the modeling of the target patient is an important task to build an accurate predictive model. I define the subset of “transferrable” patients as those who have a positive rCBV-cell density correlation, because a positive correlation is confirmed by imaging theory and the its respective literature.

The last topic is a Privacy-Preserving Positive Transfer Learning (P3TL) model. Although negative transfer has been recognized as an important issue by the transfer learning research community, there is a lack of theoretical studies in evaluating the risk of negative transfer for a transfer learning method and identifying what causes the negative transfer. My work addresses this issue. Driven by the theoretical insights, I extend Bayesian Parameter Transfer (BPT) to a new method, i.e., P3TL. The unique features of P3TL include intelligent selection of patients to transfer in order to avoid negative transfer and maintain patient privacy. These features make P3TL an excellent model for telemonitoring of PD using an At-Home Testing Device.
ContributorsYoon, Hyunsoo (Author) / Li, Jing (Thesis advisor) / Wu, Teresa (Committee member) / Yan, Hao (Committee member) / Hu, Leland S. (Committee member) / Arizona State University (Publisher)
Created2018
136013-Thumbnail Image.png
Description
The challenge of healthcare delivery has attracted widespread attention since the report published by the World Health Organization in 2000, ranking the US 37th in overall health systems performance among 191 Member States. In addition, Davis et al. (2007) demonstrated that healthcare costs in the US were higher than all

The challenge of healthcare delivery has attracted widespread attention since the report published by the World Health Organization in 2000, ranking the US 37th in overall health systems performance among 191 Member States. In addition, Davis et al. (2007) demonstrated that healthcare costs in the US were higher than all other countries, despite the fact that care was not the better than all other countries. The growing population in the US, combined with continued medical advances, has increased the demand for quality healthcare services. With this growth, however, comes the challenge of managing rising costs and maintaining efficient operations while satisfying patient's service level. Research has explored methods of improvement from system engineering, lean and process improvement, and mathematical programming of healthcare operations, to improve healthcare operations. In this project, we are interested in a patient access (patient registration) problem. The key research question is: what is an optimal decision in terms of patient admitting points considering both hospital cost and service level of patient access? To answer this question, we propose the use of the Queueing Theory to evaluate scenarios in a multi-objective decision setting implemented by Excel VBA (Visual Basic for Application). The first objective is to provide a "generic" Excel-based model with user-friendly interface such that users are able to visualize outcomes by changing chosen parameters and understand model sensitivities. The second objective is to evaluate the use Queueing in this patient access staffing decision. The data was provided by Healthcare Excellence Institute (HEI), a Phoenix-based consulting company which has experience in improving healthcare operation for more than 8 years. HEI has several hospital clients interested in determining the "optimal" number of admitting points which motivates us to develop this research project. Please note due to business confidentiality, the date used in this thesis has been modified.
ContributorsXu, Chuan (Author) / Wu, Teresa (Thesis director) / Shunk, Dan (Committee member) / Dick, Mischa (Committee member) / Barrett, The Honors College (Contributor)
Created2012-05
137487-Thumbnail Image.png
Description
The current Enterprise Requirements and Acquisition Model (ERAM), a discrete event simulation of the major tasks and decisions within the DoD acquisition system, identifies several what-if intervention strategies to improve program completion time. However, processes that contribute to the program acquisition completion time were not explicitly identified in the simulation

The current Enterprise Requirements and Acquisition Model (ERAM), a discrete event simulation of the major tasks and decisions within the DoD acquisition system, identifies several what-if intervention strategies to improve program completion time. However, processes that contribute to the program acquisition completion time were not explicitly identified in the simulation study. This research seeks to determine the acquisition processes that contribute significantly to total simulated program time in the acquisition system for all programs reaching Milestone C. Specifically, this research examines the effect of increased scope management, technology maturity, and decreased variation and mean process times in post-Design Readiness Review contractor activities by performing additional simulation analyses. Potential policies are formulated from the results to further improve program acquisition completion time.
ContributorsWorger, Danielle Marie (Author) / Wu, Teresa (Thesis director) / Shunk, Dan (Committee member) / Wirthlin, J. Robert (Committee member) / Industrial, Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2013-05
134706-Thumbnail Image.png
Description
Open source image analytics and data mining software are widely available but can be overly-complicated and non-intuitive for medical physicians and researchers to use. The ASU-Mayo Clinic Imaging Informatics Lab has developed an in-house pipeline to process medical images, extract imaging features, and develop multi-parametric models to assist disease staging

Open source image analytics and data mining software are widely available but can be overly-complicated and non-intuitive for medical physicians and researchers to use. The ASU-Mayo Clinic Imaging Informatics Lab has developed an in-house pipeline to process medical images, extract imaging features, and develop multi-parametric models to assist disease staging and diagnosis. The tools have been extensively used in a number of medical studies including brain tumor, breast cancer, liver cancer, Alzheimer's disease, and migraine. Recognizing the need from users in the medical field for a simplified interface and streamlined functionalities, this project aims to democratize this pipeline so that it is more readily available to health practitioners and third party developers.
ContributorsBaer, Lisa Zhou (Author) / Wu, Teresa (Thesis director) / Wang, Yalin (Committee member) / Computer Science and Engineering Program (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description
ABSTRACT BACKGROUND AND PURPOSE: Sinonasal inverted papilloma (IP) can harbor squamous cell carcinoma (SCC). Consequently, differentiating these tumors is important. The objective of this study was to determine if MRI-based texture analysis can differentiate SCC from IP and provide supplementary information to the radiologist. MATERIALS AND METHODS: Adult patients who

ABSTRACT BACKGROUND AND PURPOSE: Sinonasal inverted papilloma (IP) can harbor squamous cell carcinoma (SCC). Consequently, differentiating these tumors is important. The objective of this study was to determine if MRI-based texture analysis can differentiate SCC from IP and provide supplementary information to the radiologist. MATERIALS AND METHODS: Adult patients who had IP or SCC resected were eligible (coexistent IP and SCC were excluded). Inclusion required tumor size greater than 1.5 cm and a pre-operative MRI with axial T1, axial T2, and axial T1 post-contrast sequences. Five well- established texture analysis algorithms were applied to an ROI from the largest tumor cross- section. For a training dataset, machine-learning algorithms were used to identify the most accurate model, and performance was also evaluated in a validation dataset. Based on three separate blinded reviews of the ROI, isolated tumor, and entire images, two neuroradiologists predicted tumor type in consensus. RESULTS: The IP and SCC cohorts were matched for age and gender, while SCC tumor volume was larger (p=0.001). The best classification model achieved similar accuracies for training (17 SCC, 16 IP) and validation (7 SCC, 6 IP) datasets of 90.9% and 84.6% respectively (p=0.537). The machine-learning accuracy for the entire cohort (89.1%) was better than that of the neuroradiologist ROI review (56.5%, p=0.0004) but not significantly different from the neuroradiologist review of the tumors (73.9%, p=0.060) or entire images (87.0%, p=0.748). CONCLUSION: MRI-based texture analysis has potential to differentiate SCC from IP and may provide incremental information to the neuroradiologist, particularly for small or heterogeneous tumors.
ContributorsRamkumar, Shreya (Co-author) / Ranjbar, Sara (Co-author) / Wu, Teresa (Thesis director) / Li, Jing (Committee member) / Hoxworth, Joseph M. (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
153643-Thumbnail Image.png
Description
Recent advances in medical imaging technology have greatly enhanced imaging based diagnosis which requires computational effective and accurate algorithms to process the images (e.g., measure the objects) for quantitative assessment. In this dissertation, one type of imaging objects is of interest: small blobs. Example small blob objects are cells in

Recent advances in medical imaging technology have greatly enhanced imaging based diagnosis which requires computational effective and accurate algorithms to process the images (e.g., measure the objects) for quantitative assessment. In this dissertation, one type of imaging objects is of interest: small blobs. Example small blob objects are cells in histopathology images, small breast lesions in ultrasound images, glomeruli in kidney MR images etc. This problem is particularly challenging because the small blobs often have inhomogeneous intensity distribution and indistinct boundary against the background.

This research develops a generalized four-phased system for small blob detections. The system includes (1) raw image transformation, (2) Hessian pre-segmentation, (3) feature extraction and (4) unsupervised clustering for post-pruning. First, detecting blobs from 2D images is studied where a Hessian-based Laplacian of Gaussian (HLoG) detector is proposed. Using the scale space theory as foundation, the image is smoothed via LoG. Hessian analysis is then launched to identify the single optimal scale based on which a pre-segmentation is conducted. Novel Regional features are extracted from pre-segmented blob candidates and fed to Variational Bayesian Gaussian Mixture Models (VBGMM) for post pruning. Sixteen cell histology images and two hundred cell fluorescent images are tested to demonstrate the performances of HLoG. Next, as an extension, Hessian-based Difference of Gaussians (HDoG) is proposed which is capable to identify the small blobs from 3D images. Specifically, kidney glomeruli segmentation from 3D MRI (6 rats, 3 humans) is investigated. The experimental results show that HDoG has the potential to automatically detect glomeruli, enabling new measurements of renal microstructures and pathology in preclinical and clinical studies. Realizing the computation time is a key factor impacting the clinical adoption, the last phase of this research is to investigate the data reduction technique for VBGMM in HDoG to handle large-scale datasets. A new coreset algorithm is developed for variational Bayesian mixture models. Using the same MRI dataset, it is observed that the four-phased system with coreset-VBGMM has similar performance as using the full dataset but about 20 times faster.
ContributorsZhang, Min (Author) / Wu, Teresa (Thesis advisor) / Li, Jing (Committee member) / Pavlicek, William (Committee member) / Askin, Ronald (Committee member) / Arizona State University (Publisher)
Created2015
153852-Thumbnail Image.png
Description
In this thesis, a single-level, multi-item capacitated lot sizing problem with setup carryover, setup splitting and backlogging is investigated. This problem is typically used in the tactical and operational planning stage, determining the optimal production quantities and sequencing for all the products in the planning horizon. Although the capacitated lot

In this thesis, a single-level, multi-item capacitated lot sizing problem with setup carryover, setup splitting and backlogging is investigated. This problem is typically used in the tactical and operational planning stage, determining the optimal production quantities and sequencing for all the products in the planning horizon. Although the capacitated lot sizing problems have been investigated with many different features from researchers, the simultaneous consideration of setup carryover and setup splitting is relatively new. This consideration is beneficial to reduce costs and produce feasible production schedule. Setup carryover allows the production setup to be continued between two adjacent periods without incurring extra setup costs and setup times. Setup splitting permits the setup to be partially finished in one period and continued in the next period, utilizing the capacity more efficiently and remove infeasibility of production schedule.

The main approaches are that first the simple plant location formulation is adopted to reformulate the original model. Furthermore, an extended formulation by redefining the idle period constraints is developed to make the formulation tighter. Then for the purpose of evaluating the solution quality from heuristic, three types of valid inequalities are added to the model. A fix-and-optimize heuristic with two-stage product decomposition and period decomposition strategies is proposed to solve the formulation. This generic heuristic solves a small portion of binary variables and all the continuous variables rapidly in each subproblem. In addition, the case with demand backlogging is also incorporated to demonstrate that making additional assumptions to the basic formulation does not require to completely altering the heuristic.

The contribution of this thesis includes several aspects: the computational results show the capability, flexibility and effectiveness of the approaches. The average optimality gap is 6% for data without backlogging and 8% for data with backlogging, respectively. In addition, when backlogging is not allowed, the performance of fix-and-optimize heuristic is stable regardless of period length. This gives advantage of using such approach to plan longer production schedule. Furthermore, the performance of the proposed solution approaches is analyzed so that later research on similar topics could compare the result with different solution strategies.
ContributorsChen, Cheng-Lung (Author) / Zhang, Muhong (Thesis advisor) / Mohan, Srimathy (Thesis advisor) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2015
154099-Thumbnail Image.png
Description
Transfer learning refers to statistical machine learning methods that integrate the knowledge of one domain (source domain) and the data of another domain (target domain) in an appropriate way, in order to develop a model for the target domain that is better than a model using the data of the

Transfer learning refers to statistical machine learning methods that integrate the knowledge of one domain (source domain) and the data of another domain (target domain) in an appropriate way, in order to develop a model for the target domain that is better than a model using the data of the target domain alone. Transfer learning emerged because classic machine learning, when used to model different domains, has to take on one of two mechanical approaches. That is, it will either assume the data distributions of the different domains to be the same and thereby developing one model that fits all, or develop one model for each domain independently. Transfer learning, on the other hand, aims to mitigate the limitations of the two approaches by accounting for both the similarity and specificity of related domains. The objective of my dissertation research is to develop new transfer learning methods and demonstrate the utility of the methods in real-world applications. Specifically, in my methodological development, I focus on two different transfer learning scenarios: spatial transfer learning across different domains and temporal transfer learning along time in the same domain. Furthermore, I apply the proposed spatial transfer learning approach to modeling of degenerate biological systems.Degeneracy is a well-known characteristic, widely-existing in many biological systems, and contributes to the heterogeneity, complexity, and robustness of biological systems. In particular, I study the application of one degenerate biological system which is to use transcription factor (TF) binding sites to predict gene expression across multiple cell lines. Also, I apply the proposed temporal transfer learning approach to change detection of dynamic network data. Change detection is a classic research area in Statistical Process Control (SPC), but change detection in network data has been limited studied. I integrate the temporal transfer learning method called the Network State Space Model (NSSM) and SPC and formulate the problem of change detection from dynamic networks into a covariance monitoring problem. I demonstrate the performance of the NSSM in change detection of dynamic social networks.
ContributorsZou, Na (Author) / Li, Jing (Thesis advisor) / Baydogan, Mustafa (Committee member) / Borror, Connie (Committee member) / Montgomery, Douglas C. (Committee member) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2015
154578-Thumbnail Image.png
Description
Buildings consume nearly 50% of the total energy in the United States, which drives the need to develop high-fidelity models for building energy systems. Extensive methods and techniques have been developed, studied, and applied to building energy simulation and forecasting, while most of work have focused on developing dedicated modeling

Buildings consume nearly 50% of the total energy in the United States, which drives the need to develop high-fidelity models for building energy systems. Extensive methods and techniques have been developed, studied, and applied to building energy simulation and forecasting, while most of work have focused on developing dedicated modeling approach for generic buildings. In this study, an integrated computationally efficient and high-fidelity building energy modeling framework is proposed, with the concentration on developing a generalized modeling approach for various types of buildings. First, a number of data-driven simulation models are reviewed and assessed on various types of computationally expensive simulation problems. Motivated by the conclusion that no model outperforms others if amortized over diverse problems, a meta-learning based recommendation system for data-driven simulation modeling is proposed. To test the feasibility of the proposed framework on the building energy system, an extended application of the recommendation system for short-term building energy forecasting is deployed on various buildings. Finally, Kalman filter-based data fusion technique is incorporated into the building recommendation system for on-line energy forecasting. Data fusion enables model calibration to update the state estimation in real-time, which filters out the noise and renders more accurate energy forecast. The framework is composed of two modules: off-line model recommendation module and on-line model calibration module. Specifically, the off-line model recommendation module includes 6 widely used data-driven simulation models, which are ranked by meta-learning recommendation system for off-line energy modeling on a given building scenario. Only a selective set of building physical and operational characteristic features is needed to complete the recommendation task. The on-line calibration module effectively addresses system uncertainties, where data fusion on off-line model is applied based on system identification and Kalman filtering methods. The developed data-driven modeling framework is validated on various genres of buildings, and the experimental results demonstrate desired performance on building energy forecasting in terms of accuracy and computational efficiency. The framework could be easily implemented into building energy model predictive control (MPC), demand response (DR) analysis and real-time operation decision support systems.
ContributorsCui, Can (Author) / Wu, Teresa (Thesis advisor) / Weir, Jeffery D. (Thesis advisor) / Li, Jing (Committee member) / Fowler, John (Committee member) / Hu, Mengqi (Committee member) / Arizona State University (Publisher)
Created2016
155128-Thumbnail Image.png
Description
This dissertation carries out an inter-disciplinary research of operations research, statistics, power system engineering, and economics. Specifically, this dissertation focuses on a special power system scheduling problem, a unit commitment problem with uncertainty. This scheduling problem is a two-stage decision problem. In the first stage, system operator determines the binary

This dissertation carries out an inter-disciplinary research of operations research, statistics, power system engineering, and economics. Specifically, this dissertation focuses on a special power system scheduling problem, a unit commitment problem with uncertainty. This scheduling problem is a two-stage decision problem. In the first stage, system operator determines the binary commitment status (on or off) of generators in advance. In the second stage, after the realization of uncertainty, the system operator determines generation levels of the generators. The goal of this dissertation is to develop computationally-tractable methodologies and algorithms to solve large-scale unit commitment problems with uncertainty.

In the first part of this dissertation, two-stage models are studied to solve the problem. Two solution methods are studied and improved: stochastic programming and robust optimization. A scenario-based progressive hedging decomposition algorithm is applied. Several new hedging mechanisms and parameter selections rules are proposed and tested. A data-driven uncertainty set is proposed to improve the performance of robust optimization.

In the second part of this dissertation, a framework to reduce the two-stage stochastic program to a single-stage deterministic formulation is proposed. Most computation of the proposed approach can be done by offline studies. With the assistance of offline analysis, simulation, and data mining, the unit commitment problems with uncertainty can be solved efficiently.

Finally, the impacts of uncertainty on energy market prices are studied. A new component of locational marginal price, a marginal security component, which is the weighted shadow prices of the proposed security constraints, is proposed to better represent energy prices.
ContributorsLi, Chao (Author) / Hedman, Kory W (Thesis advisor) / Zhang, Muhong (Thesis advisor) / Mirchandani, Pitu B. (Committee member) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2016