Matching Items (26)

Mobile Waterway Monitor

Description

The Mobile Waterway Monitor seeks to monitor water in an unexplored way. The module is buoyant and will float with the current as well as harvests solar energy. In short,

The Mobile Waterway Monitor seeks to monitor water in an unexplored way. The module is buoyant and will float with the current as well as harvests solar energy. In short, the Mobile Waterway Monitor excels in size constraints, flexibility, extensibility, and capability. This current following monitor can show both measured trends like pH and interpolated trends like water speed, river contours, and elevation drop. The MWM strikes a balance between accuracy, portability, and being multi-purpose.

Contributors

Agent

Created

Date Created
  • 2017-05

151527-Thumbnail Image.png

Quantitative evaluation of control flow based soft error protection mechanisms

Description

Rapid technology scaling, the main driver of the power and performance improvements of computing solutions, has also rendered our computing systems extremely susceptible to transient errors called soft errors. Among

Rapid technology scaling, the main driver of the power and performance improvements of computing solutions, has also rendered our computing systems extremely susceptible to transient errors called soft errors. Among the arsenal of techniques to protect computation from soft errors, Control Flow Checking (CFC) based techniques have gained a reputation of effective, yet low-cost protection mechanism. The basic idea is that, there is a high probability that a soft-fault in program execution will eventually alter the control flow of the program. Therefore just by making sure that the control flow of the program is correct, significant protection can be achieved. More than a dozen techniques for CFC have been developed over the last several decades, ranging from hardware techniques, software techniques, and hardware-software hybrid techniques as well. Our analysis shows that existing CFC techniques are not only ineffective in protecting from soft errors, but cause additional power and performance overheads. For this analysis, we develop and validate a simulation based experimental setup to accurately and quantitatively estimate the architectural vulnerability of a program execution on a processor micro-architecture. We model the protection achieved by various state-of-the-art CFC techniques in this quantitative vulnerability estimation setup, and find out that software only CFC protection schemes (CFCSS, CFCSS+NA, CEDA) increase system vulnerability by 18% to 21% with 17% to 38% performance overhead. Hybrid CFC protection (CFEDC) increases vulnerability by 5%, while the vulnerability remains almost the same for hardware only CFC protection (CFCET); notwithstanding the hardware overheads of design cost, area, and power incurred in the hardware modifications required for their implementations.

Contributors

Agent

Created

Date Created
  • 2013

151941-Thumbnail Image.png

Towards energy efficient computing with Linux: enabling task level power awareness and support for energy efficient accelerator

Description

With increasing transistor volume and reducing feature size, it has become a major design constraint to reduce power consumption also. This has given rise to aggressive architectural changes for on-chi

With increasing transistor volume and reducing feature size, it has become a major design constraint to reduce power consumption also. This has given rise to aggressive architectural changes for on-chip power management and rapid development to energy efficient hardware accelerators. Accordingly, the objective of this research work is to facilitate software developers to leverage these hardware techniques and improve energy efficiency of the system. To achieve this, I propose two solutions for Linux kernel: Optimal use of these architectural enhancements to achieve greater energy efficiency requires accurate modeling of processor power consumption. Though there are many models available in literature to model processor power consumption, there is a lack of such models to capture power consumption at the task-level. Task-level energy models are a requirement for an operating system (OS) to perform real-time power management as OS time multiplexes tasks to enable sharing of hardware resources. I propose a detailed design methodology for constructing an architecture agnostic task-level power model and incorporating it into a modern operating system to build an online task-level power profiler. The profiler is implemented inside the latest Linux kernel and validated for Intel Sandy Bridge processor. It has a negligible overhead of less than 1\% hardware resource consumption. The profiler power prediction was demonstrated for various application benchmarks from SPEC to PARSEC with less than 4\% error. I also demonstrate the importance of the proposed profiler for emerging architectural techniques through use case scenarios, which include heterogeneous computing and fine grained per-core DVFS. Along with architectural enhancement in general purpose processors to improve energy efficiency, hardware accelerators like Coarse Grain reconfigurable architecture (CGRA) are gaining popularity. Unlike vector processors, which rely on data parallelism, CGRA can provide greater flexibility and compiler level control making it more suitable for present SoC environment. To provide streamline development environment for CGRA, I propose a flexible framework in Linux to do design space exploration for CGRA. With accurate and flexible hardware models, fine grained integration with accurate architectural simulator, and Linux memory management and DMA support, a user can carry out limitless experiments on CGRA in full system environment.

Contributors

Agent

Created

Date Created
  • 2013

152173-Thumbnail Image.png

Dynamic scheduling of stream programs on embedded multi-core processors

Description

Stream computing has emerged as an importantmodel of computation for embedded system applications particularly in the multimedia and network processing domains. In recent past several programming languages and embedded multi-core

Stream computing has emerged as an importantmodel of computation for embedded system applications particularly in the multimedia and network processing domains. In recent past several programming languages and embedded multi-core processors have been proposed for streaming applications. This thesis examines the execution and dynamic scheduling of stream programs on embedded multi-core processors. The thesis addresses the problem in the context of a multi-tasking environment with a time varying allocation of processing elements for a particular streaming application. As a solution the thesis proposes a two step approach where the stream program is compiled to gather key application information, and to generate re-targetable code. A light weight dynamic scheduler incorporates the second stage of the approach. The dynamic scheduler utilizes the static information and available resources to assign or partition the application across the multi-core architecture. The objective of the dynamic scheduler is to maximize the throughput of the application, and it is sensitive to the resource (processing elements, scratch-pad memory, DMA bandwidth) constraints imposed by the target architecture. We evaluate the proposed approach by compiling and scheduling benchmark stream programs on a representative embedded multi-core processor. We present experimental results that evaluate the quality of the solutions generated by the proposed approach by comparisons with existing techniques.

Contributors

Agent

Created

Date Created
  • 2013

155240-Thumbnail Image.png

WCET-aware scratchpad memory management for hard real-time systems

Description

Cyber-physical systems and hard real-time systems have strict timing constraints that specify deadlines until which tasks must finish their execution. Missing a deadline can cause unexpected outcome or endanger human

Cyber-physical systems and hard real-time systems have strict timing constraints that specify deadlines until which tasks must finish their execution. Missing a deadline can cause unexpected outcome or endanger human lives in safety-critical applications, such as automotive or aeronautical systems. It is, therefore, of utmost importance to obtain and optimize a safe upper bound of each task’s execution time or the worst-case execution time (WCET), to guarantee the absence of any missed deadline. Unfortunately, conventional microarchitectural components, such as caches and branch predictors, are only optimized for average-case performance and often make WCET analysis complicated and pessimistic. Caches especially have a large impact on the worst-case performance due to expensive off- chip memory accesses involved in cache miss handling. In this regard, software-controlled scratchpad memories (SPMs) have become a promising alternative to caches. An SPM is a raw SRAM, controlled only by executing data movement instructions explicitly at runtime, and such explicit control facilitates static analyses to obtain safe and tight upper bounds of WCETs. SPM management techniques, used in compilers targeting an SPM-based processor, determine how to use a given SPM space by deciding where to insert data movement instructions and what operations to perform at those program locations. This dissertation presents several management techniques for program code and stack data, which aim to optimize the WCETs of a given program. The proposed code management techniques include optimal allocation algorithms and a polynomial-time heuristic for allocating functions to the SPM space, with or without the use of abstraction of SPM regions, and a heuristic for splitting functions into smaller partitions. The proposed stack data management technique, on the other hand, finds an optimal set of program locations to evict and restore stack frames to avoid stack overflows, when the call stack resides in a size-limited SPM. In the evaluation, the WCETs of various benchmarks including real-world automotive applications are statically calculated for SPMs and caches in several different memory configurations.

Contributors

Agent

Created

Date Created
  • 2017

155831-Thumbnail Image.png

Intelligent Scheduling and Memory Management Techniques for Modern GPU Architectures

Description

With the massive multithreading execution feature, graphics processing units (GPUs) have been widely deployed to accelerate general-purpose parallel workloads (GPGPUs). However, using GPUs to accelerate computation does not always gain

With the massive multithreading execution feature, graphics processing units (GPUs) have been widely deployed to accelerate general-purpose parallel workloads (GPGPUs). However, using GPUs to accelerate computation does not always gain good performance improvement. This is mainly due to three inefficiencies in modern GPU and system architectures.

First, not all parallel threads have a uniform amount of workload to fully utilize GPU’s computation ability, leading to a sub-optimal performance problem, called warp criticality. To mitigate the degree of warp criticality, I propose a Criticality-Aware Warp Acceleration mechanism, called CAWA. CAWA predicts and accelerates the critical warp execution by allocating larger execution time slices and additional cache resources to the critical warp. The evaluation result shows that with CAWA, GPUs can achieve an average of 1.23x speedup.

Second, the shared cache storage in GPUs is often insufficient to accommodate demands of the large number of concurrent threads. As a result, cache thrashing is commonly experienced in GPU’s cache memories, particularly in the L1 data caches. To alleviate the cache contention and thrashing problem, I develop an instruction aware Control Loop Based Adaptive Bypassing algorithm, called Ctrl-C. Ctrl-C learns the cache reuse behavior and bypasses a portion of memory requests with the help of feedback control loops. The evaluation result shows that Ctrl-C can effectively improve cache utilization in GPUs and achieve an average of 1.42x speedup for cache sensitive GPGPU workloads.

Finally, GPU workloads and the co-located processes running on the host chip multiprocessor (CMP) in a heterogeneous system setup can contend for memory resources in multiple levels, resulting in significant performance degradation. To maximize the system throughput and balance the performance degradation of all co-located applications, I design a scalable performance degradation predictor specifically for heterogeneous systems, called HeteroPDP. HeteroPDP predicts the application execution time and schedules OpenCL workloads to run on different devices based on the optimization goal. The evaluation result shows HeteroPDP can improve the system fairness from 24% to 65% when an OpenCL application is co-located with other processes, and gain an additional 50% speedup compared with always offloading the OpenCL workload to GPUs.

In summary, this dissertation aims to provide insights for the future microarchitecture and system architecture designs by identifying, analyzing, and addressing three critical performance problems in modern GPUs.

Contributors

Agent

Created

Date Created
  • 2017

157100-Thumbnail Image.png

Application-aware Performance Optimization for Software Managed Manycore Architectures

Description

One of the main goals of computer architecture design is to improve performance without much increase in the power consumption. It cannot be achieved by adding increasingly complex intelligent schemes

One of the main goals of computer architecture design is to improve performance without much increase in the power consumption. It cannot be achieved by adding increasingly complex intelligent schemes in the hardware, since they will become increasingly less power-efficient. Therefore, parallelism comes up as the solution. In fact, the irrevocable trend of computer design in near future is still to keep increasing the number of cores while reducing the operating frequency. However, it is not easy to scale number of cores. One important challenge is that existing cores consume too much power. Another challenge is that cache-based memory hierarchy poses a serious limitation due to the rapidly increasing demand of area and power for coherence maintenance.

In this dissertation, opportunities to resolve the aforementioned issues were explored in two aspects.

Firstly, the possibility of removing hardware cache altogether, and replacing it with scratchpad memory with software management was explored. Scratchpad memory consumes much less power than caches. However, as data management logic is completely shifted to Software, how to reduce software overhead is challenging. This thesis presents techniques to manage scratchpad memory judiciously by exploiting application semantics and knowledge of data access patterns, thereby enabling optimization of data movement across the memory hierarchy. Experimental results show that the optimization was able to reduce stack data management overhead by 13X, produce better code mapping in more than 80% of the case, and improve performance by 83% in heap management.

Secondly, the possibility of using software branch hinting to replace hardware branch prediction to completely eliminate power consumption on corresponding hardware components was explored. As branch predictor is removed from hardware, software logic is responsible for reducing branch penalty. Techniques to minimize the branch penalty by optimizing branch hint placement were proposed, which can reduce branch penalty by 35.4% over the state-of-the-art.

Contributors

Agent

Created

Date Created
  • 2019

156829-Thumbnail Image.png

Software Techniques For Dependable Execution

Description

Advances in semiconductor technology have brought computer-based systems intovirtually all aspects of human life. This unprecedented integration of semiconductor based systems in our lives has significantly increased the domain and

Advances in semiconductor technology have brought computer-based systems intovirtually all aspects of human life. This unprecedented integration of semiconductor based systems in our lives has significantly increased the domain and the number

of safety-critical applications – application with unacceptable consequences of failure. Software-level error resilience schemes are attractive because they can provide commercial-off-the-shelf microprocessors with adaptive and scalable reliability.

Among all software-level error resilience solutions, in-application instruction replication based approaches have been widely used and are deemed to be the most effective. However, existing instruction-based replication schemes only protect some part of computations i.e. arithmetic and logical instructions and leave the rest as unprotected. To improve the efficacy of instruction-level redundancy-based approaches, we developed several error detection and error correction schemes. nZDC (near Zero silent

Data Corruption) is an instruction duplication scheme which protects the execution of whole application. Rather than detecting errors on register operands of memory and control flow operations, nZDC checks the results of such operations. nZDC en

sures the correct execution of memory write instruction by reloading stored value and checking it against redundantly computed value. nZDC also introduces a novel control flow checking mechanism which replicates compare and branch instructions and

detects both wrong direction branches as well as unwanted jumps. Fault injection experiments show that nZDC can improve the error coverage of the state-of-the-art schemes by more than 10x, without incurring any more performance penalty. Further

more, we introduced two error recovery solutions. InCheck is our backward recovery solution which makes light-weighted error-free checkpoints at the basic block granularity. In the case of error, InCheck reverts the program execution to the beginning of last executed basic block and resumes the execution by the aid of preserved in formation. NEMESIS is our forward recovery scheme which runs three versions of computation and detects errors by checking the results of all memory write and branch

operations. In the case of a mismatch, NEMESIS diagnosis routine decides if the error is recoverable. If yes, NEMESIS recovery routine reverts the effect of error from the program state and resumes program normal execution from the error detection

point.

Contributors

Agent

Created

Date Created
  • 2018

153968-Thumbnail Image.png

Compiler and architecture design for coarse-grained programmable accelerators

Description

The holy grail of computer hardware across all market segments has been to sustain performance improvement at the same pace as silicon technology scales. As the technology scales and the

The holy grail of computer hardware across all market segments has been to sustain performance improvement at the same pace as silicon technology scales. As the technology scales and the size of transistors shrinks, the power consumption and energy usage per transistor decrease. On the other hand, the transistor density increases significantly by technology scaling. Due to technology factors, the reduction in power consumption per transistor is not sufficient to offset the increase in power consumption per unit area. Therefore, to improve performance, increasing energy-efficiency must be addressed at all design levels from circuit level to application and algorithm levels.

At architectural level, one promising approach is to populate the system with hardware accelerators each optimized for a specific task. One drawback of hardware accelerators is that they are not programmable. Therefore, their utilization can be low as they perform one specific function. Using software programmable accelerators is an alternative approach to achieve high energy-efficiency and programmability. Due to intrinsic characteristics of software accelerators, they can exploit both instruction level parallelism and data level parallelism.

Coarse-Grained Reconfigurable Architecture (CGRA) is a software programmable accelerator consists of a number of word-level functional units. Motivated by promising characteristics of software programmable accelerators, the potentials of CGRAs in future computing platforms is studied and an end-to-end CGRA research framework is developed. This framework consists of three different aspects: CGRA architectural design, integration in a computing system, and CGRA compiler. First, the design and implementation of a CGRA and its instruction set is presented. This design is then modeled in a cycle accurate system simulator. The simulation platform enables us to investigate several problems associated with a CGRA when it is deployed as an accelerator in a computing system. Next, the problem of mapping a compute intensive region of a program to CGRAs is formulated. From this formulation, several efficient algorithms are developed which effectively utilize CGRA scarce resources very well to minimize the running time of input applications. Finally, these mapping algorithms are integrated in a compiler framework to construct a compiler for CGRA

Contributors

Agent

Created

Date Created
  • 2015

153948-Thumbnail Image.png

A study of latent heat of vaporization in aqueous nanofluids

Description

Nanoparticle suspensions, popularly termed “nanofluids,” have been extensively investigated for their thermal and radiative properties. Such work has generated great controversy, although it is arguably accepted today that the presence

Nanoparticle suspensions, popularly termed “nanofluids,” have been extensively investigated for their thermal and radiative properties. Such work has generated great controversy, although it is arguably accepted today that the presence of nanoparticles rarely leads to useful enhancements in either thermal conductivity or convective heat transfer. On the other hand, there are still examples of unanticipated enhancements to some properties, such as the reported specific heat of molten salt-based nanofluids and the critical heat flux. Another largely overlooked example is the apparent effect of nanoparticles on the effective latent heat of vaporization (hfg) of aqueous nanofluids. A previous study focused on molecular dynamics (MD) modeling supplemented with limited experimental data to suggest that hfg increases with increasing nanoparticle concentration.

Here, this research extends that exploratory work in an effort to determine if hfg of aqueous nanofluids can be manipulated, i.e., increased or decreased, by the addition of graphite or silver nanoparticles. Our results to date indicate that hfg can be substantially impacted, by up to ± 30% depending on the type of nanoparticle. Moreover, this dissertation reports further experiments with changing surface area based on volume fraction (0.005% to 2%) and various nanoparticle sizes to investigate the mechanisms for hfg modification in aqueous graphite and silver nanofluids. This research also investigates thermophysical properties, i.e., density and surface tension in aqueous nanofluids to support the experimental results of hfg based on the Clausius - Clapeyron equation. This theoretical investigation agrees well with the experimental results. Furthermore, this research investigates the hfg change of aqueous nanofluids with nanoscale studies in terms of melting of silver nanoparticles and hydrophobic interactions of graphite nanofluid. As a result, the entropy change due to those mechanisms could be a main cause of the changes of hfg in silver and graphite nanofluids.

Finally, applying the latent heat results of graphite and silver nanofluids to an actual solar thermal system to identify enhanced performance with a Rankine cycle is suggested to show that the tunable latent heat of vaporization in nanofluilds could be beneficial for real-world solar thermal applications with improved efficiency.

Contributors

Agent

Created

Date Created
  • 2015