Matching Items (8)

129544-Thumbnail Image.png

Computing Layouts with Deformable Templates

Description

In this paper, we tackle the problem of tiling a domain with a set of deformable templates. A valid solution to this problem completely covers the domain with templates such

In this paper, we tackle the problem of tiling a domain with a set of deformable templates. A valid solution to this problem completely covers the domain with templates such that the templates do not overlap. We generalize existing specialized solutions and formulate a general layout problem by modeling important constraints and admissible template deformations. Our main idea is to break the layout algorithm into two steps: a discrete step to lay out the approximate template positions and a continuous step to refine the template shapes. Our approach is suitable for a large class of applications, including floorplans, urban layouts, and arts and design.

Contributors

Agent

Created

Date Created
  • 2014-07-01

152370-Thumbnail Image.png

Characterizing retinotopic mapping using conformal geometry and Beltrami coefficient: a preliminary study

Description

Functional magnetic resonance imaging (fMRI) has been widely used to measure the retinotopic organization of early visual cortex in the human brain. Previous studies have identified multiple visual field maps

Functional magnetic resonance imaging (fMRI) has been widely used to measure the retinotopic organization of early visual cortex in the human brain. Previous studies have identified multiple visual field maps (VFMs) based on statistical analysis of fMRI signals, but the resulting geometry has not been fully characterized with mathematical models. This thesis explores using concepts from computational conformal geometry to create a custom software framework for examining and generating quantitative mathematical models for characterizing the geometry of early visual areas in the human brain. The software framework includes a graphical user interface built on top of a selected core conformal flattening algorithm and various software tools compiled specifically for processing and examining retinotopic data. Three conformal flattening algorithms were implemented and evaluated for speed and how well they preserve the conformal metric. All three algorithms performed well in preserving the conformal metric but the speed and stability of the algorithms varied. The software framework performed correctly on actual retinotopic data collected using the standard travelling-wave experiment. Preliminary analysis of the Beltrami coefficient for the early data set shows that selected regions of V1 that contain reasonably smooth eccentricity and polar angle gradients do show significant local conformality, warranting further investigation of this approach for analysis of early and higher visual cortex.

Contributors

Agent

Created

Date Created
  • 2013

153051-Thumbnail Image.png

Connectivity control for quad-dominant meshes

Description

Quad-dominant (QD) meshes, i.e., three-dimensional, 2-manifold polygonal meshes comprising mostly four-sided faces (i.e., quads), are a popular choice for many applications such as polygonal shape modeling, computer animation, base meshes

Quad-dominant (QD) meshes, i.e., three-dimensional, 2-manifold polygonal meshes comprising mostly four-sided faces (i.e., quads), are a popular choice for many applications such as polygonal shape modeling, computer animation, base meshes for spline and subdivision surface, simulation, and architectural design. This thesis investigates the topic of connectivity control, i.e., exploring different choices of mesh connectivity to represent the same 3D shape or surface. One key concept of QD mesh connectivity is the distinction between regular and irregular elements: a vertex with valence 4 is regular; otherwise, it is irregular. In a similar sense, a face with four sides is regular; otherwise, it is irregular. For QD meshes, the placement of irregular elements is especially important since it largely determines the achievable geometric quality of the final mesh.

Traditionally, the research on QD meshes focuses on the automatic generation of pure quadrilateral or QD meshes from a given surface. Explicit control of the placement of irregular elements can only be achieved indirectly. To fill this gap, in this thesis, we make the following contributions. First, we formulate the theoretical background about the fundamental combinatorial properties of irregular elements in QD meshes. Second, we develop algorithms for the explicit control of irregular elements and the exhaustive enumeration of QD mesh connectivities. Finally, we demonstrate the importance of connectivity control for QD meshes in a wide range of applications.

Contributors

Agent

Created

Date Created
  • 2014

152996-Thumbnail Image.png

Generating and exploring design variations for architectural and urban layouts

Description

This thesis focuses on generating and exploring design variations for architectural and urban layouts. I propose to study this general problem in three selected contexts.

First, I introduce a framework to

This thesis focuses on generating and exploring design variations for architectural and urban layouts. I propose to study this general problem in three selected contexts.

First, I introduce a framework to generate many variations of a facade design that look similar to a given facade layout. Starting from an input image, the facade is hierarchically segmented and labeled with a collection of manual and automatic tools. The user can then model constraints that should be maintained in any variation of the input facade design. Subsequently, facade variations are generated for different facade sizes, where multiple variations can be produced for a certain size.

Second, I propose a method for a user to understand and systematically explore good building layouts. Starting from a discrete set of good layouts, I analytically characterize the local shape space of good layouts around each initial layout, compactly encode these spaces, and link them to support transitions across the different local spaces. I represent such transitions in the form of a portal graph. The user can then use the portal graph, along with the family of local shape spaces, to globally and locally explore the space of good building layouts.

Finally, I propose an algorithm to computationally design street networks that balance competing requirements such as quick travel time and reduced through traffic in residential neighborhoods. The user simply provides high-level functional specifications for a target neighborhood, while my algorithm best satisfies the specification by solving for both connectivity and geometric layout of the network.

Contributors

Agent

Created

Date Created
  • 2014

154357-Thumbnail Image.png

Vectorization in analyzing 2D/3D data

Description

Vectorization is an important process in the fields of graphics and image processing. In computer-aided design (CAD), drawings are scanned, vectorized and written as CAD files in a process called

Vectorization is an important process in the fields of graphics and image processing. In computer-aided design (CAD), drawings are scanned, vectorized and written as CAD files in a process called paper-to-CAD conversion or drawing conversion. In geographic information systems (GIS), satellite or aerial images are vectorized to create maps. In graphic design and photography, raster graphics can be vectorized for easier usage and resizing. Vector arts are popular as online contents. Vectorization takes raster images, point clouds, or a series of scattered data samples in space, outputs graphic elements of various types including points, lines, curves, polygons, parametric curves and surface patches. The vectorized representations consist of a different set of components and elements from that of the inputs. The change of representation is the key difference between vectorization and practices such as smoothing and filtering. Compared to the inputs, the vector outputs provide higher order of control and attributes such as smoothness. Their curvatures or gradients at the points are scale invariant and they are more robust data sources for downstream applications and analysis. This dissertation explores and broadens the scope of vectorization in various contexts. I propose a novel vectorization algorithm on raster images along with several new applications for vectorization mechanism in processing and analysing both 2D and 3D data sets. The main components of the research are: using vectorization in generating 3D models from 2D floor plans; a novel raster image vectorization methods and its applications in computer vision, image processing, and animation; and vectorization in visualizing and information extraction in 3D laser scan data. I also apply vectorization analysis towards human body scans and rock surface scans to show insights otherwise difficult to obtain.

Contributors

Agent

Created

Date Created
  • 2016

153196-Thumbnail Image.png

Graph-based sparse learning: models, algorithms, and applications

Description

Sparse learning is a powerful tool to generate models of high-dimensional data with high interpretability, and it has many important applications in areas such as bioinformatics, medical image processing, and

Sparse learning is a powerful tool to generate models of high-dimensional data with high interpretability, and it has many important applications in areas such as bioinformatics, medical image processing, and computer vision. Recently, the a priori structural information has been shown to be powerful for improving the performance of sparse learning models. A graph is a fundamental way to represent structural information of features. This dissertation focuses on graph-based sparse learning. The first part of this dissertation aims to integrate a graph into sparse learning to improve the performance. Specifically, the problem of feature grouping and selection over a given undirected graph is considered. Three models are proposed along with efficient solvers to achieve simultaneous feature grouping and selection, enhancing estimation accuracy. One major challenge is that it is still computationally challenging to solve large scale graph-based sparse learning problems. An efficient, scalable, and parallel algorithm for one widely used graph-based sparse learning approach, called anisotropic total variation regularization is therefore proposed, by explicitly exploring the structure of a graph. The second part of this dissertation focuses on uncovering the graph structure from the data. Two issues in graphical modeling are considered. One is the joint estimation of multiple graphical models using a fused lasso penalty and the other is the estimation of hierarchical graphical models. The key technical contribution is to establish the necessary and sufficient condition for the graphs to be decomposable. Based on this key property, a simple screening rule is presented, which reduces the size of the optimization problem, dramatically reducing the computational cost.

Contributors

Agent

Created

Date Created
  • 2014

149744-Thumbnail Image.png

Smooth surfaces for video game development

Description

The video game graphics pipeline has traditionally rendered the scene using a polygonal approach. Advances in modern graphics hardware now allow the rendering of parametric methods. This thesis explores various

The video game graphics pipeline has traditionally rendered the scene using a polygonal approach. Advances in modern graphics hardware now allow the rendering of parametric methods. This thesis explores various smooth surface rendering methods that can be integrated into the video game graphics engine. Moving over to parametric or smooth surfaces from the polygonal domain has its share of issues and there is an inherent need to address various rendering bottlenecks that could hamper such a move. The game engine needs to choose an appropriate method based on in-game characteristics of the objects; character and animated objects need more sophisticated methods whereas static objects could use simpler techniques. Scaling the polygon count over various hardware platforms becomes an important factor. Much control is needed over the tessellation levels, either imposed by the hardware limitations or by the application, to be able to adaptively render the mesh without significant loss in performance. This thesis explores several methods that would help game engine developers in making correct design choices by optimally balancing the trade-offs while rendering the scene using smooth surfaces. It proposes a novel technique for adaptive tessellation of triangular meshes that vastly improves speed and tessellation count. It develops an approximate method for rendering Loop subdivision surfaces on tessellation enabled hardware. A taxonomy and evaluation of the methods is provided and a unified rendering system that provides automatic level of detail by switching between the methods is proposed.

Contributors

Agent

Created

Date Created
  • 2011

151760-Thumbnail Image.png

3D rooftop detection and modeling using orthographic aerial images

Description

Detection of extruded features like rooftops and trees in aerial images automatically is a very active area of research. Elevated features identified from aerial imagery have potential applications in urban

Detection of extruded features like rooftops and trees in aerial images automatically is a very active area of research. Elevated features identified from aerial imagery have potential applications in urban planning, identifying cover in military training or flight training. Detection of such features using commonly available geospatial data like orthographic aerial imagery is very challenging because rooftop and tree textures are often camouflaged by similar looking features like roads, ground and grass. So, additonal data such as LIDAR, multispectral imagery and multiple viewpoints are exploited for more accurate detection. However, such data is often not available, or may be improperly registered or inacurate. In this thesis, we discuss a novel framework that only uses orthographic images for detection and modeling of rooftops. A segmentation scheme that initializes by assigning either foreground (rooftop) or background labels to certain pixels in the image based on shadows is proposed. Then it employs grabcut to assign one of those two labels to the rest of the pixels based on initial labeling. Parametric model fitting is performed on the segmented results in order to create a 3D scene and to facilitate roof-shape and height estimation. The framework can also benefit from additional geospatial data such as streetmaps and LIDAR, if available.

Contributors

Agent

Created

Date Created
  • 2013