Matching Items (8)

134351-Thumbnail Image.png

Mathematical Analysis of Photoreceptor Degeneration in Retinal Detachment

Description

The retina is the lining in the back of the eye responsible for vision. When light photons hits the retina, the photoreceptors within the retina respond by sending impulses to

The retina is the lining in the back of the eye responsible for vision. When light photons hits the retina, the photoreceptors within the retina respond by sending impulses to the optic nerve, which connects to the brain. If there is injury to the eye or heredity retinal problems, this part can become detached. Detachment leads to loss of nutrients, such as oxygen and glucose, to the cells in the eye and causes cell death. Sometimes the retina is able to be surgically reattached. If the photoreceptor cells have not died and the reattachment is successful, then these cells are able to regenerate their outer segments (OS) which are essential for their functionality and vitality. In this work we will explore how the regrowth of the photoreceptor cells in a healthy eye after retinal detachment can lead to a deeper understanding of how eye cells take up nutrients and regenerate. This work uses a mathematical model for a healthy eye in conjunction with data for photoreceptors' regrowth and decay. The parameters for the healthy eye model are estimated from the data and the ranges of these parameter values are centered +/- 10\% away from these values are used for sensitivity analysis. Using parameter estimation and sensitivity analysis we can better understand how certain processes represented by these parameters change within the model as a result of retinal detachment. Having a deeper understanding for any sort of photoreceptor death and growth can be used by the greater scientific community to help with these currently irreversible conditions that lead to blindness, such as retinal detachment. The analysis in this work shows that maximizing the carrying capacity of the trophic pool and the rate of RDCVF, as well as minimizing nutrient withdrawal of the rods and the cones from the trophic pool results in both the most regrowth and least cell death in retinal detachment.

Contributors

Agent

Created

Date Created
  • 2017-05

133735-Thumbnail Image.png

Application of Optimal Control for Pharmacokinetics/Pharmacodynamics

Description

Pharmacokinetics describes the movement and processing of a drug in a body, while Pharmacodynamics describes the drug's effect on a given subject. Pharmacokinetic/Pharmacodynamic(Pk/Pd) models have become a fundamental tool when

Pharmacokinetics describes the movement and processing of a drug in a body, while Pharmacodynamics describes the drug's effect on a given subject. Pharmacokinetic/Pharmacodynamic(Pk/Pd) models have become a fundamental tool when predicting bacterial behavior and drug development. In November of 2009, Katsube et al. published their paper detailing their Pk/Pd model for the drug Doripenem and the bacteria P. aeruginosa. In their paper, they determined that there is a dependent relationship between the drug's effectiveness and the dosing strategy of the drug. Therefore, this thesis has applied optimal control in order to optimize the drug's effectiveness, while not burdening the subject with the side effects of the drug. Optimal Control is a mathematical tool used to balance two competing factors. As a result, it has become a useful tool used to make decisions involving complex behavior. By using Optimal Control, the model will maximize the drug's effect on the bacterial population of P. aeruginosa, while minimizing the drug concentration of Doripenem. In doing so, our research will enable doctors and clinicians to maximize a drug's effectiveness on the body, while minimizing side effects.

Contributors

Agent

Created

Date Created
  • 2018-05

147784-Thumbnail Image.png

A Mathematical Analysis of a Model of Adderall Abuse

Description

Adderall remains to be one of the most commonly abused drug among college campuses. Although it is a prescription drug that is primarily used to treat attention deficit hyperactivity disorder

Adderall remains to be one of the most commonly abused drug among college campuses. Although it is a prescription drug that is primarily used to treat attention deficit hyperactivity disorder (ADHD), it has become one of the many "study drugs" due to its usage among college students during stressful school times, such as exams, where increased concentration and energy levels are thought to improve work efficiency. However, Adderall is notable for having a high potential for abuse and a risk of psychological and physical side effects. In this paper, we conducted a mathematical analysis on an existing epidemiological model of Adderall abuse. We started by verifying the positivity of solutions using techniques from dynamical systems because this is a population model dealing with people. Then, we found and investigated different equilibrium solutions to analyze their stability using both analytical and graphical approaches. Finally, the results were tied back into the Adderall model and conclusions were drawn.

Contributors

Agent

Created

Date Created
  • 2021-05

132019-Thumbnail Image.png

Adderall Use in the College-Age Population: A Mathematical Approach

Description

College campuses are one of the most common places for substance abuse. Typically, these substances are thought of to be alcohol, marijuana, and cocaine. However, Adderall is the second most

College campuses are one of the most common places for substance abuse. Typically, these substances are thought of to be alcohol, marijuana, and cocaine. However, Adderall is the second most commonly abused drug on college campuses. It is used to treat attention deficit hyperactivity disorder (ADHD). Adderall increases attention span and focus, so it is also commonly used as a study drug. Students frequently buy Adderall from a friend with a prescription, and use it to stay up all night cramming for an exam or finishing a project. This is a topic that not much research has been done on since Adderall only became widely used starting in the mid 2000’s. Since it is unethical to run experiments to learn more about Adderall use, and there is a limited amount of data online, a different approach had to be taken to explore this issue further. As a mathematics major, I determined that the best way to do so was to create an SIR mathematical model. In this model we have five different populations, or compartments: the population susceptible to Adderall use, people who use Adderall with an Adderall prescription, people who use Adderall without an Adderall prescription, people with an Adderall prescription stop using Adderall, and people without an Adderall prescription stop using Adderall. We also observed the rates at which people move between each population. Using this model, we created a set of differential equations to analyze and run simulations with. Looking at steady state, equilibrium points, stability, best and worst-case scenarios, and parameter impact, we drew conclusions and came up with possible courses of action. Overall, creating this model taught me not only about drug abuse, but about how useful mathematical modeling can be, especially concerning substance abuse.

Contributors

Agent

Created

Date Created
  • 2019-12

150418-Thumbnail Image.png

Immune response in the study of infectious diseases (co-infection) in an endemic region

Description

Diseases have been part of human life for generations and evolve within the population, sometimes dying out while other times becoming endemic or the cause of recurrent outbreaks. The long

Diseases have been part of human life for generations and evolve within the population, sometimes dying out while other times becoming endemic or the cause of recurrent outbreaks. The long term influence of a disease stems from different dynamics within or between pathogen-host, that have been analyzed and studied by many researchers using mathematical models. Co-infection with different pathogens is common, yet little is known about how infection with one pathogen affects the host's immunological response to another. Moreover, no work has been found in the literature that considers the variability of the host immune health or that examines a disease at the population level and its corresponding interconnectedness with the host immune system. Knowing that the spread of the disease in the population starts at the individual level, this thesis explores how variability in immune system response within an endemic environment affects an individual's vulnerability, and how prone it is to co-infections. Immunology-based models of Malaria and Tuberculosis (TB) are constructed by extending and modifying existing mathematical models in the literature. The two are then combined to give a single nine-variable model of co-infection with Malaria and TB. Because these models are difficult to gain any insight analytically due to the large number of parameters, a phenomenological model of co-infection is proposed with subsystems corresponding to the individual immunology-based model of a single infection. Within this phenomenological model, the variability of the host immune health is also incorporated through three different pathogen response curves using nonlinear bounded Michaelis-Menten functions that describe the level or state of immune system (healthy, moderate and severely compromised). The immunology-based models of Malaria and TB give numerical results that agree with the biological observations. The Malaria--TB co-infection model gives reasonable results and these suggest that the order in which the two diseases are introduced have an impact on the behavior of both. The subsystems of the phenomenological models that correspond to a single infection (either of Malaria or TB) mimic much of the observed behavior of the immunology-based counterpart and can demonstrate different behavior depending on the chosen pathogen response curve. In addition, varying some of the parameters and initial conditions in the phenomenological model yields a range of topologically different mathematical behaviors, which suggests that this behavior may be able to be observed in the immunology-based models as well. The phenomenological models clearly replicate the qualitative behavior of primary and secondary infection as well as co-infection. The mathematical solutions of the models correspond to the fundamental states described by immunologists: virgin state, immune state and tolerance state. The phenomenological model of co-infection also demonstrates a range of parameter values and initial conditions in which the introduction of a second disease causes both diseases to grow without bound even though those same parameters and initial conditions did not yield unbounded growth in the corresponding subsystems. This results applies to all three states of the host immune system. In terms of the immunology-based system, this would suggest the following: there may be parameter values and initial conditions in which a person can clear Malaria or TB (separately) from their system but in which the presence of both can result in the person dying of one of the diseases. Finally, this thesis studies links between epidemiology (population level) and immunology in an effort to assess the impact of pathogen's spread within the population on the immune response of individuals. Models of Malaria and TB are proposed that incorporate the immune system of the host into a mathematical model of an epidemic at the population level.

Contributors

Agent

Created

Date Created
  • 2011

158674-Thumbnail Image.png

Modeling and Analyzing the Progression of Retinitis Pigmentosa

Description

Patients suffering from Retinitis Pigmentosa (RP), the most common type of inherited retinal degeneration, experience irreversible vision loss due to photoreceptor degeneration. The preservation of cone photoreceptors has been deemed

Patients suffering from Retinitis Pigmentosa (RP), the most common type of inherited retinal degeneration, experience irreversible vision loss due to photoreceptor degeneration. The preservation of cone photoreceptors has been deemed medically relevant as a therapy aimed at preventing blindness in patients with RP. Cones rely on aerobic glycolysis to supply the metabolites necessary for outer segment (OS) renewal and maintenance. The rod-derived cone viability factor (RdCVF), a protein secreted by the rod photoreceptors that preserves the cones, accelerates the flow of glucose into the cone cell stimulating aerobic glycolysis. This dissertation presents and analyzes ordinary differential equation (ODE) models of cellular and molecular level photoreceptor interactions in health and disease to examine mechanisms leading to blindness in patients with RP.

First, a mathematical model composed of four ODEs is formulated to investigate the progression of RP, accounting for the new understanding of RdCVF’s role in enhancing cone survival. A mathematical analysis is performed, and stability and bifurcation analyses are used to explore various pathways to blindness. Experimental data are used for parameter estimation and model validation. The numerical results are framed in terms of four stages in the progression of RP. Sensitivity analysis is used to determine mechanisms that have a significant affect on the cones at each stage of RP. Utilizing a non-dimensional form of the RP model, a numerical bifurcation analysis via MATCONT revealed the existence of stable limit cycles at two stages of RP.

Next, a novel eleven dimensional ODE model of molecular and cellular level interactions is described. The subsequent analysis is used to uncover mechanisms that affect cone photoreceptor functionality and vitality. Preliminary simulations show the existence of oscillatory behavior which is anticipated when all processes are functioning properly. Additional simulations are carried out to explore the impact of a reduction in the concentration of RdCVF coupled with disruption in the metabolism associated with cone OS shedding, and confirms cone-on-rod reliance. The simulation results are compared with experimental data. Finally, four cases are considered, and a sensitivity analysis is performed to reveal mechanisms that significantly impact the cones in each case.

Contributors

Agent

Created

Date Created
  • 2020

Differential equation models for understanding phenomena beyond experimental capabilities

Description

Mathematical models are important tools for addressing problems that exceed experimental capabilities. In this work, I present ordinary and partial differential equation (ODE, PDE) models for two problems: Vicodin abuse

Mathematical models are important tools for addressing problems that exceed experimental capabilities. In this work, I present ordinary and partial differential equation (ODE, PDE) models for two problems: Vicodin abuse and impact cratering.

The prescription opioid Vicodin is the nation's most widely prescribed pain reliever. The majority of Vicodin abusers are first introduced via prescription, distinguishing it from other drugs in which the most common path to abuse begins with experimentation. I develop and analyze two mathematical models of Vicodin use and abuse, considering only those patients with an initial Vicodin prescription. Through adjoint sensitivity analysis, I show that focusing efforts on prevention rather than treatment has greater success at reducing the total population of abusers. I prove that solutions to each model exist, are unique, and are non-negative. I also derive conditions for which these solutions are asymptotically stable.

Verification and Validation (V&V) are necessary processes to ensure accuracy of computational methods. Simulations are essential for addressing impact cratering problems, because these problems often exceed experimental capabilities. I show that the Free Lagrange (FLAG) hydrocode, developed and maintained by Los Alamos National Laboratory, can be used for impact cratering simulations by verifying FLAG against two analytical models of aluminum-on-aluminum impacts at different impact velocities and validating FLAG against a glass-into-water laboratory impact experiment. My verification results show good agreement with the theoretical maximum pressures, and my mesh resolution study shows that FLAG converges at resolutions low enough to reduce the required computation time from about 28 hours to about 25 minutes.

Asteroid 16 Psyche is the largest M-type (metallic) asteroid in the Main Asteroid Belt. Radar albedo data indicate Psyche's surface is rich in metallic content, but estimates for Psyche's composition vary widely. Psyche has two large impact structures in its Southern hemisphere, with estimated diameters from 50 km to 70 km and estimated depths up to 6.4 km. I use the FLAG hydrocode to model the formation of the largest of these impact structures. My results indicate an oblique angle of impact rather than a vertical impact. These results also support previous claims that Psyche is metallic and porous.

Contributors

Agent

Created

Date Created
  • 2019

149643-Thumbnail Image.png

Theoretical studies on a two strain model of drug resistance: understand, predict and control the emergence of drug resistance

Description

Infectious diseases are a leading cause of death worldwide. With the development of drugs, vaccines and antibiotics, it was believed that for the first time in human history diseases would

Infectious diseases are a leading cause of death worldwide. With the development of drugs, vaccines and antibiotics, it was believed that for the first time in human history diseases would no longer be a major cause of mortality. Newly emerging diseases, re-emerging diseases and the emergence of microorganisms resistant to existing treatment have forced us to re-evaluate our optimistic perspective. In this study, a simple mathematical framework for super-infection is considered in order to explore the transmission dynamics of drug-resistance. Through its theoretical analysis, we identify the conditions necessary for the coexistence between sensitive strains and drug-resistant strains. Farther, in order to investigate the effectiveness of control measures, the model is extended so as to include vaccination and treatment. The impact that these preventive and control measures may have on its disease dynamics is evaluated. Theoretical results being confirmed via numerical simulations. Our theoretical results on two-strain drug-resistance models are applied in the context of Malaria, antimalarial drugs, and the administration of a possible partially effective vaccine. The objective is to develop a monitoring epidemiological framework that help evaluate the impact of antimalarial drugs and partially-effective vaccine in reducing the disease burden at the population level. Optimal control theory is applied in the context of this framework in order to assess the impact of time dependent cost-effective treatment efforts. It is shown that cost-effective combinations of treatment efforts depend on the population size, cost of implementing treatment controls, and the parameters of the model. We use these results to identify optimal control strategies for several scenarios.

Contributors

Agent

Created

Date Created
  • 2011