Matching Items (21)

153201-Thumbnail Image.png

Integration of remote sensing, field observations and modelling for ecohydrological studies in Sonora, Mexico

Description

Ecohydrological responses to rainfall in the North American monsoon (NAM) region lead to complex surface-atmosphere interactions. In early summer, it is expected that soil properties and topography act as primary

Ecohydrological responses to rainfall in the North American monsoon (NAM) region lead to complex surface-atmosphere interactions. In early summer, it is expected that soil properties and topography act as primary controls in hydrologic processes. Under the presence of strongly dynamic ecosystems, catchment hydrology is expected to vary substantially in comparison to other semiarid areas, affecting our understanding of ecohydrological processes and the parameterization of predictive models. A large impediment toward making progress in this field is the lack of spatially extensive observational data. As a result, it is critical to integrate numerical models, remote sensing observations and ground data to understand and predict ecohydrological dynamics in space and time, including soil moisture, evapotranspiration and runoff generation dynamics. In this thesis, a set of novel ecohydrological simulations that integrate remote sensing and ground observations were conducted at three spatial scales in a semiarid river basin in northern Sonora, Mexico. First, single site simulations spanning several summers were carried out in two contrasting mountain ecosystems to predict evapotranspiration partitioning. Second, a catchment-scale simulation was conducted to evaluate the effects of spatially-variable soil thickness and textural properties on water fluxes and states during one monsoon season. Finally, a river basin modeling effort spanning seven years was applied to understand interannual variability in ecohydrological dynamics. Results indicated that ecohydrological simulations with a dynamic representation of vegetation greening tracked well the seasonal evolution of observed evapotranspiration and soil moisture at two measurement locations. A switch in the dominant component of evapotranspiration from soil evaporation to plant transpiration was observed for each ecosystem, depending on the timing and magnitude of vegetation greening. Furthermore, spatially variable soil thickness affects subsurface flow while soil texture controls patterns of surface soil moisture and evapotranspiration during the transition from dry to wet conditions. Finally, the ratio of transformation of precipitation into evapotranspiration (ET/P) and run off (Q/P) changed in space and time as summer monsoon progresses. The results of this research improve the understanding of the ecohydrology of NAM region, which can be useful for developing sustainable watershed management plans in the face of anticipated land cover and climate changes.

Contributors

Agent

Created

Date Created
  • 2014

152609-Thumbnail Image.png

Quantifying the temporal and spatial response of channel steepness to changes in rift basin architecture

Description

Quantifying the temporal and spatial evolution of active continental rifts contributes to our understanding of fault system evolution and seismic hazards. Rift systems also preserve robust paleoenvironmental records and are

Quantifying the temporal and spatial evolution of active continental rifts contributes to our understanding of fault system evolution and seismic hazards. Rift systems also preserve robust paleoenvironmental records and are often characterized by strong climatic gradients that can be used to examine feedbacks between climate and tectonics. In this thesis, I quantify the spatial and temporal history of rift flank uplift by analyzing bedrock river channel profiles along footwall escarpments in the Malawi segment of the East Africa Rift. This work addresses questions that are widely applicable to continental rift settings: (1) Is rift-flank uplift sufficiently described by theoretical elliptical along-fault displacement patterns? (2) Do orographic climate patterns induced by rift topography affect rift-flank uplift or morphology? (3) How do uplift patterns along rift flanks vary over geologic timescales? In Malawi, 100-km-long border faults of alternating polarity bound half-graben sedimentary basins containing up to 4km of basin fill and water depths up to 700m. Orographically driven precipitation produces climatic gradients along footwall escarpments resulting in mean annual rainfall that varies spatially from 800 to 2500 mm. Temporal oscillations in climate have also resulted in lake lowstands 500 m below the modern shoreline. I examine bedrock river profiles crossing the Livingstone and Usisya Border Faults in northern Malawi using the channel steepness index (Ksn) to assess importance of these conditions on rift flank evolution. River profiles reveal a consistent transient pattern that likely preserves a temporal record of slip and erosion along the entire border fault system. These profiles and other topographic observations, along with known modern and paleoenvironmental conditions, can be used to interpret a complete history of rift flank development from the onset of rifting to present. I interpret the morphology of the upland landscape to preserve the onset of extensional faulting across a relict erosion surface. The linkages of individual faults and acceleration of slip during the development of a continuous border fault is suggested by an analysis of knickpoint elevations and Ksn. Finally, these results suggest that the modern observed climate gradient only began to significantly affect denudation patterns once a high relief rift flank was established.

Contributors

Agent

Created

Date Created
  • 2014

152607-Thumbnail Image.png

Tectonic and climatic influence on the evolution of the Bhutan Himalaya

Description

The Himalaya are the archetypal example of a continental collision belt, formed by the ongoing convergence between India and Eurasia. Boasting some of the highest and most rugged topography on

The Himalaya are the archetypal example of a continental collision belt, formed by the ongoing convergence between India and Eurasia. Boasting some of the highest and most rugged topography on Earth, there is currently no consensus on how climatic and tectonic processes have combined to shape its topographic evolution. The Kingdom of Bhutan in the eastern Himalaya provides a unique opportunity to study the interconnections among Himalayan climate, topography, erosion, and tectonics. The eastern Himalaya are remarkably different from the rest of the orogen, most strikingly due to the presence of the Shillong Plateau to the south of the Himalayan rangefront. The tectonic structures associated with the Shillong Plateau have accommodated convergence between India and Eurasia and created a natural experiment to test the possible response of the Himalaya to a reduction in local shortening. In addition, the position and orientation of the plateau topography has intercepted moisture once bound for the Himalaya and created a natural experiment to test the possible response of the range to a reduction in rainfall. I focused this study around the gently rolling landscapes found in the middle of the otherwise extremely rugged Bhutan Himalaya, with the understanding that these landscapes likely record a recent change in the evolution of the range. I have used geochronometric, thermochronometric, and cosmogenic nuclide techniques, combined with thermal-kinematic and landscape evolution models to draw three primary conclusions. 1) The cooling histories of bedrock samples from the hinterland of the Bhutan Himalaya show a protracted decrease in erosion rate from the Middle Miocene toward the Pliocene. I have attributed this change to a reduction in shortening rates across the Himalayan mountain belt, due to increased accommodation of shortening across the Shillong Plateau. 2) The low-relief landscapes of Bhutan were likely created by backtilting and surface uplift produced by an active, blind, hinterland duplex. These landscapes were formed during surface uplift, which initiated ca. 1.5 Ma and has totaled 800 m. 3) Millennial-scale erosion rates are coupled with modern rainfall rates. Non-linear relationships between topographic metrics and erosion rates, suggest a fundamental difference in the mode of river incision within the drier interior of Bhutan and the wetter foothills.

Contributors

Agent

Created

Date Created
  • 2014

152977-Thumbnail Image.png

Hydroclimatic controls on erosional efficiency in mountain landscapes

Description

Climate and its influence on hydrology and weathering is a key driver of surface processes on Earth. Despite its clear importance to hazard generation, fluvial sediment transport and erosion, the

Climate and its influence on hydrology and weathering is a key driver of surface processes on Earth. Despite its clear importance to hazard generation, fluvial sediment transport and erosion, the drawdown of atmospheric CO2 via the rock cycle, and feedbacks between climate and tectonics, quantifying climatic controls on long-term erosion rates has proven to be one of the grand problems in geomorphology. In fact, recent attempts addressing this problem using cosmogenic radionuclide (CRN) derived erosion rates suggest very weak climatic controls on millennial-scale erosion rates contrary to expectations. In this work, two challenges are addressed that may be impeding progress on this problem.

The first challenge is choosing appropriate climate metrics that are closely tied to erosional processes. For example, in fluvial landscapes, most runoff events do little to no geomorphic work due to erosion thresholds, and event-scale variability dictates how frequently these thresholds are exceeded. By analyzing dense hydroclimatic datasets in the contiguous U.S. and Puerto Rico, we show that event-scale runoff variability is only loosely related to event-scale rainfall variability. Instead, aridity and fractional evapotranspiration (ET) losses are much better predictors of runoff variability. Importantly, simple hillslope-scale soil water balance models capture major aspects of the observed relation between runoff variability and fractional ET losses. Together, these results point to the role of vegetation water use as a potential key to relating mean hydrologic partitioning with runoff variability.

The second challenge is that long-term erosion rates are expected to balance rock uplift rates as landscapes approach topographic steady state, regardless of hydroclimatic setting. This is illustrated with new data along the Main Gulf Escarpment, Baja, Mexico. Under this conceptual framework, climate is not expected to set the erosion rate, but rather the erosional efficiency of the system, or the steady-state relief required for erosion to keep up with tectonically driven uplift rates. To assess differences in erosional efficiency across landscapes experiencing different climatic regimes, we contrast new CRN data from tectonically active landscapes in Baja, Mexico and southern California (arid) with northern Honduras (very humid) alongside other published global data from similar hydroclimatic settings. This analysis shows how climate does, in fact, set functional relationships between topographic metrics like channel steepness and long-term erosion rates. However, we also show that relatively small differences in rock erodibility and incision thresholds can easily overprint hydroclimatic controls on erosional efficiency motivating the need for more field based constraints on these important variables.

Contributors

Agent

Created

Date Created
  • 2014

156588-Thumbnail Image.png

Field and Flume Investigations of Bedload Transport and Bedforms in Sand-Bedded Rivers

Description

Worldwide, rivers and streams make up dense, interconnected conveyor belts of sediment– removing carved away earth and transporting it downstream. The propensity of alluvial river beds to self-organize into complex

Worldwide, rivers and streams make up dense, interconnected conveyor belts of sediment– removing carved away earth and transporting it downstream. The propensity of alluvial river beds to self-organize into complex trains of bedforms (i.e. ripples and dunes) suggests that the associated fluid and sediment dynamics over individual bedforms are an integral component of bedload transport (sediment rolled or bounced along the river bed) over larger scales. Generally speaking, asymmetric bedforms (such as alluvial ripples and dunes) migrate downstream via erosion on the stoss side of the bedform and deposition on the lee side of the bedform. Thus, the migration of bedforms is intrinsically linked to the downstream flux of bedload sediment. Accurate quantification of bedload transport is important for the management of waters, civil engineering, and river restoration efforts. Although important, accurate qualification of bedload transport is a difficult task that continues t elude researchers. This dissertation focuses on improving our understanding and quantification of bedload transport on the two spatial scales: the bedform scale and the reach (~100m) scale.

Despite a breadth of work investigating the spatiotemporal details of fluid dynamics over bedforms and bedload transport dynamics over flat beds, there remains a relative dearth of investigations into the spatiotemporal details of bedload transport over bedforms and on a sub-bedform scale. To address this, we conducted two sets of flume experiments focused on the two fundamental regions of flow associated with bedforms: flow separation/reattachment on the lee side of the bedform (Chapter 1; backward facing-step) and flow reacceleration up the stoss side of the next bedform (Chapter 2; two-dimensional bedform). Using Laser and Acoustic Doppler Velocimetry to record fluid turbulent events and manual particle tracking of high-speed imagery to record bedload transport dynamics, we identified the existence and importance of “permeable splat events” in the region proximal to flow reattachment.

These coupled turbulent and sediment transport events are integral to the spatiotemporal pattern of bedload transport over bedforms. Splat events are localized, high magnitude, intermittent flow features in which fluid impinges on the bed, infiltrates the top portion of bed, and then exfiltrates in all directions surrounding the point of impingement. This initiates bedload transport in a radial pattern. These turbulent structures are primarily associated with quadrant 1 and 4 turbulent structures (i.e. instantaneous fluid fluctuations in the streamwise direction that bring fluid down into the bed in the case of quadrant 1 events, or up away from the bed in the case of quadrant 4 events) and generate a distinct pattern of bedload transport compared to transport dynamics distal to flow reattachment. Distal to flow reattachment, bedload transport is characterized by relatively unidirectional transport. The dynamics of splat events, specifically their potential for inducing significant magnitudes of cross-stream transport, has important implications for the evolution of bedforms from simple, two dimensional features to complex, three-dimensional features.

New advancements in sonar technology have enabled more detailed quantification of bedload transport on the reach scale, a process paramount to the effective management of rivers with sand or gravel-dominated bed material. However, a practical and scalable field methodology for reliably estimating bedload remains elusive. A popular approach involves calculating transport from the geometry and celerity of migrating bedforms, extracted from time-series of bed elevation profiles (BEPs) acquired using echosounders. Using two sets of repeat multibeam sonar surveys from the Diamond Creek USGS gage station in Grand Canyon National Park with large spatio-temporal resolution and coverage, we compute bedload using three field techniques for acquiring BEPs: repeat multi-, single-, and multiple single-beam sonar. Significant differences in flux arise between repeat multibeam and single beam sonar. Mulitbeam and multiple single beam sonar systems can potentially yield comparable results, but the latter relies on knowledge of bedform geometries and flow that collectively inform optimal beam spacing and sampling rate. These results serve to guide design of optimal sampling, and for comparing transport estimates from different sonar configurations.

Contributors

Agent

Created

Date Created
  • 2018

156391-Thumbnail Image.png

Heat and mass transfer on planetary surfaces

Description

Planetary surface studies across a range of spatial scales are key to interpreting modern and ancient operative processes and to meeting strategic mission objectives for robotic planetary science exploration. At

Planetary surface studies across a range of spatial scales are key to interpreting modern and ancient operative processes and to meeting strategic mission objectives for robotic planetary science exploration. At the meter-scale and below, planetary regolith conducts heat at a rate that depends on the physical properties of the regolith particles, such as particle size, sorting, composition, and shape. Radiometric temperature measurements thus provide the means to determine regolith properties and rock abundance from afar. However, heat conduction through a matrix of irregular particles is a complicated physical system that is strongly influenced by temperature and atmospheric gas pressure. A series of new regolith thermal conductivity experiments were conducted under realistic planetary surface pressure and temperature conditions. A new model is put forth to describe the radiative, solid, and gaseous conduction terms of regolith on Earth, Mars, and airless bodies. These results will be used to infer particle size distribution from temperature measurements of the primitive asteroid Bennu to aid in OSIRIS-REx sampling site selection. Moving up in scale, fluvial processes are extremely influential in shaping Earth's surface and likely played an influential role on ancient Mars. Amphitheater-headed canyons are found on both planets, but conditions necessary for their development have been debated for many years. A spatial analysis of canyon form distribution with respect to local stratigraphy at the Escalante River and on Tarantula Mesa, Utah, indicates that canyon distribution is most closely related to variations in local rock strata, rather than groundwater spring intensity or climate variations. This implies that amphitheater-headed canyons are not simple markers of groundwater seepage erosion or megaflooding. Finally, at the largest scale, volcanism has significantly altered the surface characteristics of Earth and Mars. A field campaign was conducted in Hawaii to investigate the December 1974 Kilauea lava flow, where it was found that lava coils formed in an analogous manner to those found in Athabasca Valles, Mars. The location and size of the coils may be used as indicators of local effusion rate, viscosity, and crustal thickness.

Contributors

Agent

Created

Date Created
  • 2018

154183-Thumbnail Image.png

Surface response to slip along a propagating blind thrust fault, Wheeler Ridge, California

Description

Understanding topography developed above an active blind thrust fault is critical to quantifying the along-strike variability of the timing, magnitude, and rate of fault slip at depth. Hillslope and fluvial

Understanding topography developed above an active blind thrust fault is critical to quantifying the along-strike variability of the timing, magnitude, and rate of fault slip at depth. Hillslope and fluvial processes respond to growing topography such that the existing landscape is an indicator of constructional and destruction processes. Light detection and ranging (lidar) data provide a necessary tool for fine-scale quantitative understanding of the topography to understand the tectonic evolution of blind thrust faulting. In this thesis, lidar topographic data collected in 2014 are applied to a well-studied laterally propagating anticline developed above a blind thrust fault in order to assess the geomorphic response of along-strike variations in tectonic deformation. Wheeler Ridge is an asymmetric east-propagating anticline (10 km axis, 330 m topographic relief) above a north-vergent blind thrust fault at the northern front of the Transverse Ranges, Southern San Joaquin Valley, California. Wheeler Ridge is part of a thrust system initiating in the late Miocene and is known to have significant historic earthquakes occur (e.g., 1952 Mw 7.3 Kern County earthquake). Analysis of the lidar data enables quantitative assessment of four key geomorphic relationships that may be indicative of relative variation in local rock uplift. First, I observe remnant landforms in the youngest, easternmost section of Wheeler Ridge that indicate the erosional history of older deposits to the west. Second, I examine the central portion of Wheeler Ridge where drainages and hillslopes are closely tied to uplift rates. Third, I observe the major wind gap within which a series of knickpoints are aligned at a similar elevation and tie into the local depositional and uplift history. Finally, I survey the western section and specifically, the fold backlimb where high-resolution topography and field mapping indicate long ridgelines that may preserve the uplifted and tilted alluvial fan morphology. I address changing landforms along the fold axis to test whether backlimb interfluves are paleosurfaces or the result of post-tectonic erosional hillslope processes. This work will be paired with future geochronology to update the ages of uplifted alluvial fan deposits and better constrain the timing of along-strike uplift of Wheeler Ridge.

Contributors

Agent

Created

Date Created
  • 2015

Investigating Lava Flow Emplacement: Implications for Volcanic Hazards and Planetary Evolution

Description

Lava flow emplacement in the laboratory and on the surface of Mars was investigated. In the laboratory, the effects of unsteady effusion rates at the vent on four modes

Lava flow emplacement in the laboratory and on the surface of Mars was investigated. In the laboratory, the effects of unsteady effusion rates at the vent on four modes of emplacement common to lava flow propagation: resurfacing, marginal breakouts, inflation, and lava tubes was addressed. A total of 222 experiments were conducted using a programmable pump to inject dyed PEG wax into a chilled bath (~ 0° C) in tanks with a roughened base at slopes of 0, 7, 16, and 29°. The experiments were divided into four conditions, which featured increasing or decreasing eruption rates for either 10 or 50 s. The primary controls on modes of emplacement were crust formation, variability in the eruption rate, and duration of the pulsatory flow rate. Resurfacing – although a relatively minor process – is inhibited by an extensive, coherent crust. Inflation requires a competent, flexible crust. Tube formation requires a crust and intermediate to low effusion rates. On Mars, laboratory analogue experiments combined with models that use flow dimensions to estimate emplacement conditions and using high resolution image data and digital terrain models (e.g. THEMIS IR, CTX, HRSC), the eruption rates, viscosities, and yield strengths of 40 lava flows in the Tharsis Volcanic Province have been quantified. These lava flows have lengths, mean widths, and mean thicknesses of 15 – 314 km, 0.5 – 29 km, and 11 – 91 m, respectively. Flow volumes range from ~1 – 430 km3. Based on laboratory experiments, the 40 observed lava flows were erupted at 0.2 – 6.5x103 m3/s, while the Graetz number and Jeffrey’s equation when applied to 34 of 40 lava flows indicates eruption rates and viscosities of 300 – ~3.5 x 104 m3/s and ~105 – 108 Pa s, respectively. Another model which accounts for mass loss to levee formation was applied to a subset of flows, n = 13, and suggests eruption rates and viscosities of ~30 – ~1.2 x 103 m3/s and 4.5 x 106 – ~3 x 107 Pa s, respectively. Emplacement times range from days to centuries indicating the necessity for long-term subsurface conduits capable of delivering enormous volumes of lava to the surface.

Contributors

Agent

Created

Date Created
  • 2020

157373-Thumbnail Image.png

Dynamics of Ices and Fluids on Mars and Kuiper Belt Objects

Description

The seasonal deposition of CO2 on the polar caps is one of the most dynamic processes on Mars and is a dominant driver of the global climate. Remote sensing temperature

The seasonal deposition of CO2 on the polar caps is one of the most dynamic processes on Mars and is a dominant driver of the global climate. Remote sensing temperature and albedo data were used to estimate the subliming mass of CO2 ice on south polar gullies near Sisyphi Cavi. Results showed that column mass abundances range from 400 - 1000 kg.m2 in an area less than 60 km2 in late winter. Complete sublimation of the seasonal caps may occur later than estimated by large-scale studies and is geographically dependent. Seasonal ice depth estimates suggested variations of up to 1.5 m in depth or 75% in porosity at any one time. Interannual variations in these data appeared to correlate with dust activity in the southern hemisphere. Correlation coefficients were used to investigate the relationship between frost-free surface properties and the evolution of the seasonal ice in this region. Ice on high thermal inertia units was found to disappear before any other ice, likely caused by inhibited deposition during fall. Seasonal ice springtime albedo appeared to be predominantly controlled by orientation, with north-facing slopes undergoing brightening initially in spring, then subliming before south-facing slopes. Overall, the state of seasonal ice is far more complex than globally and regionally averaged studies can identify.

The discovery of cryovolcanic features on Charon and the presence of ammonia hydrates on the surfaces of other medium-sized Kuiper Belt Objects suggests that cryovolcanism may be important to their evolution. A two-dimensional, center-point finite difference, thermal hydraulic model was developed to explore the behavior of cryovolcanic conduits on midsized KBOs. Conduits on a Charon-surrogate were shown to maintain flow through over 200 km of crust and mantle down to radii of R = 0.20 m. Radii higher than this became turbulent due to high viscous dissipation and low thermal conductivity. This model was adapted to explore the emplacement of Kubrik Mons. Steady state flow was achieved with a conduit of radius R = 0.02 m for a source chamber at 2.3 km depth. Effusion rates computed from this estimated a 122 - 163 Myr upper limit formation timescale.

Contributors

Agent

Created

Date Created
  • 2019

157563-Thumbnail Image.png

Tools, Techniques, and Applications For Detrital Thermochronology: From the Lab to the Eastern Sierra Nevada, California

Description

Geochronology and thermochronology are valuable tools for investigating the synergy between the deformational and erosional processes that shape mountainous terrains. Though numerous techniques have been developed to probe the rate

Geochronology and thermochronology are valuable tools for investigating the synergy between the deformational and erosional processes that shape mountainous terrains. Though numerous techniques have been developed to probe the rate and timing of events within these settings, the research presented here explores how scientists can use fewer samples to produce richer data products with broader contextual importance.

The beginning of this compilation focuses on establishing laboratory techniques to facilitate this goal. I developed a novel laser ablation ‘double dating’ (LADD) technique that rapidly yields paired U/Pb and (U-Th)/He dates for the accessory minerals zircon, titanite, and apatite. The technique obviates the need for geometric corrections typically applied during (U-Th)/He data reduction, enables the analysis of a broader spectrum of detrital crystals, and provides the opportunity for additional mapping and isotopic analyses that are traditionally challenging to procure and/or fraught with assumptions. Despite the technique’s promise, I also found it essential to weigh several considerations of relevance when attempting to date young (≤ Miocene) accessory minerals with low concentrations of U + Th. Consequently, I discuss the impact that such variables have on the magnitude of analytical imprecision and the data’s flexibility for geologic interpretation.

Beyond the lab, I collected a suite of bedrock and detrital samples from small catchments draining the southeastern Sierra Nevada mountains of California. Using the techniques described above as well as conventional methods for (U-Th)/He zircon dating, I compared the utility of both bedrock and detrital approaches for extrapolating local exhumation histories. I additionally tested the ability to employ detrital datasets to extrapolate cooling histories that span from mineral crystallization to rock exhumation through the upper crust. Employing principal mode dates from a combination of zircon and apatite LADD dates and detrital hornblende 40Ar/39Ar dates, I was able to derive thermal models that demonstrate the existence of significant variability in the cooling histories of various intrusive units along the eastern Sierra Nevada. While these results only scratch the surface of what’s possible within the realm of detrital-based research, this contribution demonstrates the utility of expanding the temporal and spatial scope of traditional detrital methodologies.

Contributors

Agent

Created

Date Created
  • 2019