Matching Items (22)

130882-Thumbnail Image.png

Examining reputation from a life history perspective

Description

An individual’s reputation can be beneficial or detrimental to their exchanges with others,
and these exchanges may be critical for achieving evolutionary goals, such as reproduction.
Depending on their reputation, an individual may or may not gain access to resources

An individual’s reputation can be beneficial or detrimental to their exchanges with others,
and these exchanges may be critical for achieving evolutionary goals, such as reproduction.
Depending on their reputation, an individual may or may not gain access to resources in order to
achieve their evolutionary goals. Reputation is typically described as being “positive” and
“negative,” but the current study aimed to identify potential nuances to reputations beyond the
traditional dichotomy. It was hypothesized that different types of reputations (such as “friendly”,
“dishonest”, and “aggressive”) would group together in categories beyond “positive” and
“negative.” Additionally, individuals with different life history strategies might find different
reputations important, because the reputations they find most important may help them get the
kinds of resources they need to attain their specific evolutionary goals. Therefore, it was also
predicted that the importance individuals place on different types of reputations would vary as a
function of life history strategy. Exploratory factor analysis identified a five factor structure for
reputations. Individuals also placed varying levels of importance on different types of
reputations, and found some reputations more important than others depending on their life
history strategy. This study demonstrates that reputational information is more nuanced than
previously thought and future research should consider that there may be more than just
“positive” and “negative” reputations in social interactions.

Contributors

Agent

Created

Date Created
2020-12

151501-Thumbnail Image.png

Daily diary data: effects of cycles on inferences

Description

Daily dairies and other intensive measurement methods are increasingly used to study the relationships between two time varying variables X and Y. These data are commonly analyzed using longitudinal multilevel or bivariate growth curve models that allow for random effects

Daily dairies and other intensive measurement methods are increasingly used to study the relationships between two time varying variables X and Y. These data are commonly analyzed using longitudinal multilevel or bivariate growth curve models that allow for random effects of intercept (and sometimes also slope) but which do not address the effects of weekly cycles in the data. Three Monte Carlo studies investigated the impact of omitting the weekly cycles in daily dairy data under the multilevel model framework. In cases where cycles existed in both the time-varying predictor series (X) and the time-varying outcome series (Y) but were ignored, the effects of the within- and between-person components of X on Y tended to be biased, as were their corresponding standard errors. The direction and magnitude of the bias depended on the phase difference between the cycles in the two series. In cases where cycles existed in only one series but were ignored, the standard errors of the regression coefficients for the within- and between-person components of X tended to be biased, and the direction and magnitude of bias depended on which series contained cyclical components.

Contributors

Agent

Created

Date Created
2013

152032-Thumbnail Image.png

Impact of violations of longitudinal measurement invariance in latent growth models and autoregressive quasi-simplex models

Description

In order to analyze data from an instrument administered at multiple time points it is a common practice to form composites of the items at each wave and to fit a longitudinal model to the composites. The advantage of using

In order to analyze data from an instrument administered at multiple time points it is a common practice to form composites of the items at each wave and to fit a longitudinal model to the composites. The advantage of using composites of items is that smaller sample sizes are required in contrast to second order models that include the measurement and the structural relationships among the variables. However, the use of composites assumes that longitudinal measurement invariance holds; that is, it is assumed that that the relationships among the items and the latent variables remain constant over time. Previous studies conducted on latent growth models (LGM) have shown that when longitudinal metric invariance is violated, the parameter estimates are biased and that mistaken conclusions about growth can be made. The purpose of the current study was to examine the impact of non-invariant loadings and non-invariant intercepts on two longitudinal models: the LGM and the autoregressive quasi-simplex model (AR quasi-simplex). A second purpose was to determine if there are conditions in which researchers can reach adequate conclusions about stability and growth even in the presence of violations of invariance. A Monte Carlo simulation study was conducted to achieve the purposes. The method consisted of generating items under a linear curve of factors model (COFM) or under the AR quasi-simplex. Composites of the items were formed at each time point and analyzed with a linear LGM or an AR quasi-simplex model. The results showed that AR quasi-simplex model yielded biased path coefficients only in the conditions with large violations of invariance. The fit of the AR quasi-simplex was not affected by violations of invariance. In general, the growth parameter estimates of the LGM were biased under violations of invariance. Further, in the presence of non-invariant loadings the rejection rates of the hypothesis of linear growth increased as the proportion of non-invariant items and as the magnitude of violations of invariance increased. A discussion of the results and limitations of the study are provided as well as general recommendations.

Contributors

Agent

Created

Date Created
2013

150618-Thumbnail Image.png

Regression analysis of grouped counts and frequencies using the generalized linear model

Description

Coarsely grouped counts or frequencies are commonly used in the behavioral sciences. Grouped count and grouped frequency (GCGF) that are used as outcome variables often violate the assumptions of linear regression as well as models designed for categorical outcomes; there

Coarsely grouped counts or frequencies are commonly used in the behavioral sciences. Grouped count and grouped frequency (GCGF) that are used as outcome variables often violate the assumptions of linear regression as well as models designed for categorical outcomes; there is no analytic model that is designed specifically to accommodate GCGF outcomes. The purpose of this dissertation was to compare the statistical performance of four regression models (linear regression, Poisson regression, ordinal logistic regression, and beta regression) that can be used when the outcome is a GCGF variable. A simulation study was used to determine the power, type I error, and confidence interval (CI) coverage rates for these models under different conditions. Mean structure, variance structure, effect size, continuous or binary predictor, and sample size were included in the factorial design. Mean structures reflected either a linear relationship or an exponential relationship between the predictor and the outcome. Variance structures reflected homoscedastic (as in linear regression), heteroscedastic (monotonically increasing) or heteroscedastic (increasing then decreasing) variance. Small to medium, large, and very large effect sizes were examined. Sample sizes were 100, 200, 500, and 1000. Results of the simulation study showed that ordinal logistic regression produced type I error, statistical power, and CI coverage rates that were consistently within acceptable limits. Linear regression produced type I error and statistical power that were within acceptable limits, but CI coverage was too low for several conditions important to the analysis of counts and frequencies. Poisson regression and beta regression displayed inflated type I error, low statistical power, and low CI coverage rates for nearly all conditions. All models produced unbiased estimates of the regression coefficient. Based on the statistical performance of the four models, ordinal logistic regression seems to be the preferred method for analyzing GCGF outcomes. Linear regression also performed well, but CI coverage was too low for conditions with an exponential mean structure and/or heteroscedastic variance. Some aspects of model prediction, such as model fit, were not assessed here; more research is necessary to determine which statistical model best captures the unique properties of GCGF outcomes.

Contributors

Agent

Created

Date Created
2012

149352-Thumbnail Image.png

Robustness of Latent variable interaction methods to nonnormal exogenous indicators

Description

For this thesis a Monte Carlo simulation was conducted to investigate the robustness of three latent interaction modeling approaches (constrained product indicator, generalized appended product indicator (GAPI), and latent moderated structural equations (LMS)) under high degrees of nonnormality of the

For this thesis a Monte Carlo simulation was conducted to investigate the robustness of three latent interaction modeling approaches (constrained product indicator, generalized appended product indicator (GAPI), and latent moderated structural equations (LMS)) under high degrees of nonnormality of the exogenous indicators, which have not been investigated in previous literature. Results showed that the constrained product indicator and LMS approaches yielded biased estimates of the interaction effect when the exogenous indicators were highly nonnormal. When the violation of nonnormality was not severe (symmetric with excess kurtosis < 1), the LMS approach with ML estimation yielded the most precise latent interaction effect estimates. The LMS approach with ML estimation also had the highest statistical power among the three approaches, given that the actual Type-I error rates of the Wald and likelihood ratio test of interaction effect were acceptable. In highly nonnormal conditions, only the GAPI approach with ML estimation yielded unbiased latent interaction effect estimates, with an acceptable actual Type-I error rate of both the Wald test and likelihood ratio test of interaction effect. No support for the use of the Satorra-Bentler or Yuan-Bentler ML corrections was found across all three methods.

Contributors

Agent

Created

Date Created
2010

149409-Thumbnail Image.png

Multilevel mediation analysis: statistical assumptions and centering

Description

Mediation analysis is a statistical approach that examines the effect of a treatment (e.g., prevention program) on an outcome (e.g., substance use) achieved by targeting and changing one or more intervening variables (e.g., peer drug use norms). The increased use

Mediation analysis is a statistical approach that examines the effect of a treatment (e.g., prevention program) on an outcome (e.g., substance use) achieved by targeting and changing one or more intervening variables (e.g., peer drug use norms). The increased use of prevention intervention programs with outcomes measured at multiple time points following the intervention requires multilevel modeling techniques to account for clustering in the data. Estimating multilevel mediation models, in which all the variables are measured at individual level (Level 1), poses several challenges to researchers. The first challenge is to conceptualize a multilevel mediation model by clarifying the underlying statistical assumptions and implications of those assumptions on cluster-level (Level-2) covariance structure. A second challenge is that variables measured at Level 1 potentially contain both between- and within-cluster variation making interpretation of multilevel analysis difficult. As a result, multilevel mediation analyses may yield coefficient estimates that are composites of coefficient estimates at different levels if proper centering is not used. This dissertation addresses these two challenges. Study 1 discusses the concept of a correctly specified multilevel mediation model by examining the underlying statistical assumptions and implication of those assumptions on Level-2 covariance structure. Further, Study 1 presents analytical results showing algebraic relationships between the population parameters in a correctly specified multilevel mediation model. Study 2 extends previous work on centering in multilevel mediation analysis. First, different centering methods in multilevel analysis including centering within cluster with the cluster mean as a Level-2 predictor of intercept (CWC2) are discussed. Next, application of the CWC2 strategy to accommodate multilevel mediation models is explained. It is shown that the CWC2 centering strategy separates the between- and within-cluster mediated effects. Next, Study 2 discusses assumptions underlying a correctly specified CWC2 multilevel mediation model and defines between- and within-cluster mediated effects. In addition, analytical results for the algebraic relationships between the population parameters in a CWC2 multilevel mediation model are presented. Finally, Study 2 shows results of a simulation study conducted to verify derived algebraic relationships empirically.

Contributors

Agent

Created

Date Created
2010

150179-Thumbnail Image.png

The effects of age, hormone loss, and estrogen treatment on spatial cognition in the rat: parameters and putative mechanisms

Description

Cognitive function is multidimensional and complex, and research indicates that it is impacted by age, lifetime experience, and ovarian hormone milieu. One particular domain of cognitive function that is susceptible to age-related decrements is spatial memory. Cognitive practice can affect

Cognitive function is multidimensional and complex, and research indicates that it is impacted by age, lifetime experience, and ovarian hormone milieu. One particular domain of cognitive function that is susceptible to age-related decrements is spatial memory. Cognitive practice can affect spatial memory when aged in both males and females, and in females alone ovarian hormones have been found to alter spatial memory via modulating brain microstructure and function in many of the same brain areas affected by aging. The research in this dissertation has implications that promote an understanding of the effects of cognitive practice on aging memory, why males and females respond differently to cognitive practice, and the parameters and mechanisms underlying estrogen's effects on memory. This body of work suggests that cognitive practice can enhance memory when aged and that estrogen is a probable candidate facilitating the observed differences in the effects of cognitive practice depending on sex. This enhancement in cognitive practice effects via estrogen is supported by data demonstrating that estrogen enhances spatial memory and hippocampal synaptic plasticity. The estrogen-facilitated memory enhancements and alterations in hippocampal synaptic plasticity are at least partially facilitated via enhancements in cholinergic signaling from the basal forebrain. Finally, age, dose, and type of estrogen utilized are important factors to consider when evaluating estrogen's effects on memory and its underlying mechanisms, since age alters the responsiveness to estrogen treatment and the dose of estrogen needed, and small alterations in the molecular structure of estrogen can have a profound impact on estrogen's efficacy on memory. Collectively, this dissertation elucidates many parameters that dictate the outcome, and even the direction, of the effects that cognitive practice and estrogens have on cognition during aging. Indeed, many parameters including the ones described here are important considerations when designing future putative behavioral interventions, behavioral therapies, and hormone therapies. Ideally, the parameters described here will be used to help design the next generation of interventions, therapies, and nootropic agents that will allow individuals to maintain their cognitive capacity when aged, above and beyond what is currently possible, thus enacting lasting improvement in women's health and public health in general.

Contributors

Agent

Created

Date Created
2011

152985-Thumbnail Image.png

Obtaining accurate estimates of the mediated effect with and without prior information

Description

Research methods based on the frequentist philosophy use prior information in a priori power calculations and when determining the necessary sample size for the detection of an effect, but not in statistical analyses. Bayesian methods incorporate prior knowledge into the

Research methods based on the frequentist philosophy use prior information in a priori power calculations and when determining the necessary sample size for the detection of an effect, but not in statistical analyses. Bayesian methods incorporate prior knowledge into the statistical analysis in the form of a prior distribution. When prior information about a relationship is available, the estimates obtained could differ drastically depending on the choice of Bayesian or frequentist method. Study 1 in this project compared the performance of five methods for obtaining interval estimates of the mediated effect in terms of coverage, Type I error rate, empirical power, interval imbalance, and interval width at N = 20, 40, 60, 100 and 500. In Study 1, Bayesian methods with informative prior distributions performed almost identically to Bayesian methods with diffuse prior distributions, and had more power than normal theory confidence limits, lower Type I error rates than the percentile bootstrap, and coverage, interval width, and imbalance comparable to normal theory, percentile bootstrap, and the bias-corrected bootstrap confidence limits. Study 2 evaluated if a Bayesian method with true parameter values as prior information outperforms the other methods. The findings indicate that with true values of parameters as the prior information, Bayesian credibility intervals with informative prior distributions have more power, less imbalance, and narrower intervals than Bayesian credibility intervals with diffuse prior distributions, normal theory, percentile bootstrap, and bias-corrected bootstrap confidence limits. Study 3 examined how much power increases when increasing the precision of the prior distribution by a factor of ten for either the action or the conceptual path in mediation analysis. Power generally increases with increases in precision but there are many sample size and parameter value combinations where precision increases by a factor of 10 do not lead to substantial increases in power.

Contributors

Agent

Created

Date Created
2014

153052-Thumbnail Image.png

Stress, depression, and the mother-infant relationship across the first year

Description

Postpartum depression (PPD) is a significant public health concern affecting up to half a million U.S. women annually. Mexican-American women experience substantially higher rates of PPD, and represent an underserved population with significant health disparities that put these women and

Postpartum depression (PPD) is a significant public health concern affecting up to half a million U.S. women annually. Mexican-American women experience substantially higher rates of PPD, and represent an underserved population with significant health disparities that put these women and their infants at greater risk for substantial psychological and developmental difficulties. The current study utilized data on perceived stress, depression, maternal parenting behavior, and infant social-emotional and cognitive development from 214 Mexican-American mother-infant dyads. The first analysis approach utilized a latent intercept (LI) model to examine how overall mean levels and within-person deviations of perceived stress, depressive symptoms, and maternal parenting behavior are related across the postpartum period. Results indicated large, positive between- and within-person correlations between perceived stress and depression. Neither perceived stress nor depressive symptoms were found to have significant between- or within-person associations with the parenting variables. The second analysis approach utilized an autoregressive cross-lagged model with tests of mediation to identify underlying mechanisms among perceived stress, postpartum depressive symptoms, and maternal parenting behavior in the prediction of infant social-emotional and cognitive development. Results indicated that increased depressive symptoms at 12- and 18-weeks were associated with subsequent reports of increased perceived stress at 18- and 24-weeks, respectively. Perceived stress at 12-weeks was found to be negatively associated with subsequent non-hostility at 18-weeks, and both sensitivity and non-hostility were found to be associated with infant cognitive development and social-emotional competencies at 12 months of age (52-weeks), but not with social-emotional problems. The results of the mediation analyses showed that non-hostility at 18- and 24-weeks significantly mediated the association between perceived stress at 12-weeks and infant cognitive development and social-emotional competencies at 52-weeks. The findings extend research that sensitive parenting in early childhood is as important to the development of cognitive ability, social behavior, and emotion regulation in ethnic minority cultures as it is in majority culture families; that maternal perceptions of stress may spillover into parenting behavior, resulting in increased hostility and negatively influencing infant cognitive and social-emotional development; and that symptoms of depressed mood may influence the experience of stress.

Contributors

Agent

Created

Date Created
2014

153391-Thumbnail Image.png

Multilevel multiple imputation: an examination of competing methods

Description

Missing data are common in psychology research and can lead to bias and reduced power if not properly handled. Multiple imputation is a state-of-the-art missing data method recommended by methodologists. Multiple imputation methods can generally be divided into two broad

Missing data are common in psychology research and can lead to bias and reduced power if not properly handled. Multiple imputation is a state-of-the-art missing data method recommended by methodologists. Multiple imputation methods can generally be divided into two broad categories: joint model (JM) imputation and fully conditional specification (FCS) imputation. JM draws missing values simultaneously for all incomplete variables using a multivariate distribution (e.g., multivariate normal). FCS, on the other hand, imputes variables one at a time, drawing missing values from a series of univariate distributions. In the single-level context, these two approaches have been shown to be equivalent with multivariate normal data. However, less is known about the similarities and differences of these two approaches with multilevel data, and the methodological literature provides no insight into the situations under which the approaches would produce identical results. This document examined five multilevel multiple imputation approaches (three JM methods and two FCS methods) that have been proposed in the literature. An analytic section shows that only two of the methods (one JM method and one FCS method) used imputation models equivalent to a two-level joint population model that contained random intercepts and different associations across levels. The other three methods employed imputation models that differed from the population model primarily in their ability to preserve distinct level-1 and level-2 covariances. I verified the analytic work with computer simulations, and the simulation results also showed that imputation models that failed to preserve level-specific covariances produced biased estimates. The studies also highlighted conditions that exacerbated the amount of bias produced (e.g., bias was greater for conditions with small cluster sizes). The analytic work and simulations lead to a number of practical recommendations for researchers.

Contributors

Agent

Created

Date Created
2015